/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:12 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */ /* * This function contains 208 FP additions, 72 FP multiplications, * (or, 136 additions, 0 multiplications, 72 fused multiply/add), * 81 stack variables, 4 constants, and 80 memory accesses */ #include "dft/scalar/n.h" static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) { E T7, T2N, T3b, TD, TP, T1R, T2f, T1d, Tt, TA, TB, T2w, T2z, T2P, T35; E T36, T3d, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1T, T29, T2a, T2h, T1h; E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2O, T32, T33, T3c, TE, TF, TG, TU; E TZ, T10, T1D, T1I, T1S, T26, T27, T2g, T1e, T1f, T1g; { E T3, T1N, TN, T2L, T6, TO, T1Q, T2M; { E T1, T2, TL, TM; T1 = ri[0]; T2 = ri[WS(is, 10)]; T3 = T1 + T2; T1N = T1 - T2; TL = ii[0]; TM = ii[WS(is, 10)]; TN = TL - TM; T2L = TL + TM; } { E T4, T5, T1O, T1P; T4 = ri[WS(is, 5)]; T5 = ri[WS(is, 15)]; T6 = T4 + T5; TO = T4 - T5; T1O = ii[WS(is, 5)]; T1P = ii[WS(is, 15)]; T1Q = T1O - T1P; T2M = T1O + T1P; } T7 = T3 - T6; T2N = T2L - T2M; T3b = T2L + T2M; TD = T3 + T6; TP = TN - TO; T1R = T1N - T1Q; T2f = T1N + T1Q; T1d = TO + TN; } { E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w; E T2y; { E Tn, To, T11, T12; Tn = ri[WS(is, 8)]; To = ri[WS(is, 18)]; Tp = Tn + To; T1o = Tn - To; T11 = ii[WS(is, 8)]; T12 = ii[WS(is, 18)]; T13 = T11 - T12; T2u = T11 + T12; } { E Tq, Tr, T1p, T1q; Tq = ri[WS(is, 13)]; Tr = ri[WS(is, 3)]; Ts = Tq + Tr; T14 = Tq - Tr; T1p = ii[WS(is, 13)]; T1q = ii[WS(is, 3)]; T1r = T1p - T1q; T2v = T1p + T1q; } { E Tu, Tv, T16, T17; Tu = ri[WS(is, 12)]; Tv = ri[WS(is, 2)]; Tw = Tu + Tv; T1t = Tu - Tv; T16 = ii[WS(is, 12)]; T17 = ii[WS(is, 2)]; T18 = T16 - T17; T2x = T16 + T17; } { E Tx, Ty, T1u, T1v; Tx = ri[WS(is, 17)]; Ty = ri[WS(is, 7)]; Tz = Tx + Ty; T19 = Tx - Ty; T1u = ii[WS(is, 17)]; T1v = ii[WS(is, 7)]; T1w = T1u - T1v; T2y = T1u + T1v; } Tt = Tp - Ts; TA = Tw - Tz; TB = Tt + TA; T2w = T2u - T2v; T2z = T2x - T2y; T2P = T2w + T2z; T35 = T2u + T2v; T36 = T2x + T2y; T3d = T35 + T36; TH = Tp + Ts; TI = Tw + Tz; TJ = TH + TI; T15 = T13 - T14; T1a = T18 - T19; T1b = T15 + T1a; T1s = T1o - T1r; T1x = T1t - T1w; T1T = T1s + T1x; T29 = T1o + T1r; T2a = T1t + T1w; T2h = T29 + T2a; T1h = T14 + T13; T1i = T19 + T18; T1j = T1h + T1i; } { E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H; E T2F; { E T8, T9, TQ, TR; T8 = ri[WS(is, 4)]; T9 = ri[WS(is, 14)]; Ta = T8 + T9; T1z = T8 - T9; TQ = ii[WS(is, 4)]; TR = ii[WS(is, 14)]; TS = TQ - TR; T2B = TQ + TR; } { E Tb, Tc, T1A, T1B; Tb = ri[WS(is, 9)]; Tc = ri[WS(is, 19)]; Td = Tb + Tc; TT = Tb - Tc; T1A = ii[WS(is, 9)]; T1B = ii[WS(is, 19)]; T1C = T1A - T1B; T2C = T1A + T1B; } { E Tf, Tg, TV, TW; Tf = ri[WS(is, 16)]; Tg = ri[WS(is, 6)]; Th = Tf + Tg; T1E = Tf - Tg; TV = ii[WS(is, 16)]; TW = ii[WS(is, 6)]; TX = TV - TW; T2E = TV + TW; } { E Ti, Tj, T1F, T1G; Ti = ri[WS(is, 1)]; Tj = ri[WS(is, 11)]; Tk = Ti + Tj; TY = Ti - Tj; T1F = ii[WS(is, 1)]; T1G = ii[WS(is, 11)]; T1H = T1F - T1G; T2F = T1F + T1G; } Te = Ta - Td; Tl = Th - Tk; Tm = Te + Tl; T2D = T2B - T2C; T2G = T2E - T2F; T2O = T2D + T2G; T32 = T2B + T2C; T33 = T2E + T2F; T3c = T32 + T33; TE = Ta + Td; TF = Th + Tk; TG = TE + TF; TU = TS - TT; TZ = TX - TY; T10 = TU + TZ; T1D = T1z - T1C; T1I = T1E - T1H; T1S = T1D + T1I; T26 = T1z + T1C; T27 = T1E + T1H; T2g = T26 + T27; T1e = TT + TS; T1f = TY + TX; T1g = T1e + T1f; } { E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t; T2s = Tm - TB; TC = Tm + TB; T2r = FNMS(KP250000000, TC, T7); T2A = T2w - T2z; T2H = T2D - T2G; T2I = FNMS(KP618033988, T2H, T2A); T2K = FMA(KP618033988, T2A, T2H); ro[WS(os, 10)] = T7 + TC; T2J = FMA(KP559016994, T2s, T2r); ro[WS(os, 14)] = FNMS(KP951056516, T2K, T2J); ro[WS(os, 6)] = FMA(KP951056516, T2K, T2J); T2t = FNMS(KP559016994, T2s, T2r); ro[WS(os, 2)] = FNMS(KP951056516, T2I, T2t); ro[WS(os, 18)] = FMA(KP951056516, T2I, T2t); } { E T2S, T2Q, T2R, T2W, T2Y, T2U, T2V, T2X, T2T; T2S = T2O - T2P; T2Q = T2O + T2P; T2R = FNMS(KP250000000, T2Q, T2N); T2U = Tt - TA; T2V = Te - Tl; T2W = FNMS(KP618033988, T2V, T2U); T2Y = FMA(KP618033988, T2U, T2V); io[WS(os, 10)] = T2N + T2Q; T2X = FMA(KP559016994, T2S, T2R); io[WS(os, 6)] = FNMS(KP951056516, T2Y, T2X); io[WS(os, 14)] = FMA(KP951056516, T2Y, T2X); T2T = FNMS(KP559016994, T2S, T2R); io[WS(os, 2)] = FMA(KP951056516, T2W, T2T); io[WS(os, 18)] = FNMS(KP951056516, T2W, T2T); } { E T30, TK, T2Z, T38, T3a, T34, T37, T39, T31; T30 = TG - TJ; TK = TG + TJ; T2Z = FNMS(KP250000000, TK, TD); T34 = T32 - T33; T37 = T35 - T36; T38 = FMA(KP618033988, T37, T34); T3a = FNMS(KP618033988, T34, T37); ro[0] = TD + TK; T39 = FNMS(KP559016994, T30, T2Z); ro[WS(os, 12)] = FNMS(KP951056516, T3a, T39); ro[WS(os, 8)] = FMA(KP951056516, T3a, T39); T31 = FMA(KP559016994, T30, T2Z); ro[WS(os, 4)] = FNMS(KP951056516, T38, T31); ro[WS(os, 16)] = FMA(KP951056516, T38, T31); } { E T3g, T3e, T3f, T3k, T3m, T3i, T3j, T3l, T3h; T3g = T3c - T3d; T3e = T3c + T3d; T3f = FNMS(KP250000000, T3e, T3b); T3i = TE - TF; T3j = TH - TI; T3k = FMA(KP618033988, T3j, T3i); T3m = FNMS(KP618033988, T3i, T3j); io[0] = T3b + T3e; T3l = FNMS(KP559016994, T3g, T3f); io[WS(os, 8)] = FNMS(KP951056516, T3m, T3l); io[WS(os, 12)] = FMA(KP951056516, T3m, T3l); T3h = FMA(KP559016994, T3g, T3f); io[WS(os, 4)] = FMA(KP951056516, T3k, T3h); io[WS(os, 16)] = FNMS(KP951056516, T3k, T3h); } { E T24, T1c, T23, T2c, T2e, T28, T2b, T2d, T25; T24 = T10 - T1b; T1c = T10 + T1b; T23 = FNMS(KP250000000, T1c, TP); T28 = T26 - T27; T2b = T29 - T2a; T2c = FMA(KP618033988, T2b, T28); T2e = FNMS(KP618033988, T28, T2b); io[WS(os, 5)] = TP + T1c; T2d = FNMS(KP559016994, T24, T23); io[WS(os, 13)] = FNMS(KP951056516, T2e, T2d); io[WS(os, 17)] = FMA(KP951056516, T2e, T2d); T25 = FMA(KP559016994, T24, T23); io[WS(os, 1)] = FNMS(KP951056516, T2c, T25); io[WS(os, 9)] = FMA(KP951056516, T2c, T25); } { E T2k, T2i, T2j, T2o, T2q, T2m, T2n, T2p, T2l; T2k = T2g - T2h; T2i = T2g + T2h; T2j = FNMS(KP250000000, T2i, T2f); T2m = TU - TZ; T2n = T15 - T1a; T2o = FMA(KP618033988, T2n, T2m); T2q = FNMS(KP618033988, T2m, T2n); ro[WS(os, 5)] = T2f + T2i; T2p = FNMS(KP559016994, T2k, T2j); ro[WS(os, 13)] = FMA(KP951056516, T2q, T2p); ro[WS(os, 17)] = FNMS(KP951056516, T2q, T2p); T2l = FMA(KP559016994, T2k, T2j); ro[WS(os, 1)] = FMA(KP951056516, T2o, T2l); ro[WS(os, 9)] = FNMS(KP951056516, T2o, T2l); } { E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n; T1m = T1g - T1j; T1k = T1g + T1j; T1l = FNMS(KP250000000, T1k, T1d); T1y = T1s - T1x; T1J = T1D - T1I; T1K = FNMS(KP618033988, T1J, T1y); T1M = FMA(KP618033988, T1y, T1J); io[WS(os, 15)] = T1d + T1k; T1L = FMA(KP559016994, T1m, T1l); io[WS(os, 11)] = FNMS(KP951056516, T1M, T1L); io[WS(os, 19)] = FMA(KP951056516, T1M, T1L); T1n = FNMS(KP559016994, T1m, T1l); io[WS(os, 3)] = FNMS(KP951056516, T1K, T1n); io[WS(os, 7)] = FMA(KP951056516, T1K, T1n); } { E T1W, T1U, T1V, T20, T22, T1Y, T1Z, T21, T1X; T1W = T1S - T1T; T1U = T1S + T1T; T1V = FNMS(KP250000000, T1U, T1R); T1Y = T1h - T1i; T1Z = T1e - T1f; T20 = FNMS(KP618033988, T1Z, T1Y); T22 = FMA(KP618033988, T1Y, T1Z); ro[WS(os, 15)] = T1R + T1U; T21 = FMA(KP559016994, T1W, T1V); ro[WS(os, 11)] = FMA(KP951056516, T22, T21); ro[WS(os, 19)] = FNMS(KP951056516, T22, T21); T1X = FNMS(KP559016994, T1W, T1V); ro[WS(os, 3)] = FMA(KP951056516, T20, T1X); ro[WS(os, 7)] = FNMS(KP951056516, T20, T1X); } } } } static const kdft_desc desc = { 20, "n1_20", {136, 0, 72, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_20) (planner *p) { X(kdft_register) (p, n1_20, &desc); } #else /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */ /* * This function contains 208 FP additions, 48 FP multiplications, * (or, 184 additions, 24 multiplications, 24 fused multiply/add), * 81 stack variables, 4 constants, and 80 memory accesses */ #include "dft/scalar/n.h" static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) { E T7, T2Q, T3h, TD, TP, T1U, T2l, T1d, Tt, TA, TB, T2w, T2z, T2S, T35; E T36, T3f, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1W, T29, T2a, T2j, T1h; E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2R, T32, T33, T3e, TE, TF, TG, TU; E TZ, T10, T1D, T1I, T1V, T26, T27, T2i, T1e, T1f, T1g; { E T3, T1Q, TN, T2O, T6, TO, T1T, T2P; { E T1, T2, TL, TM; T1 = ri[0]; T2 = ri[WS(is, 10)]; T3 = T1 + T2; T1Q = T1 - T2; TL = ii[0]; TM = ii[WS(is, 10)]; TN = TL - TM; T2O = TL + TM; } { E T4, T5, T1R, T1S; T4 = ri[WS(is, 5)]; T5 = ri[WS(is, 15)]; T6 = T4 + T5; TO = T4 - T5; T1R = ii[WS(is, 5)]; T1S = ii[WS(is, 15)]; T1T = T1R - T1S; T2P = T1R + T1S; } T7 = T3 - T6; T2Q = T2O - T2P; T3h = T2O + T2P; TD = T3 + T6; TP = TN - TO; T1U = T1Q - T1T; T2l = T1Q + T1T; T1d = TO + TN; } { E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w; E T2y; { E Tn, To, T11, T12; Tn = ri[WS(is, 8)]; To = ri[WS(is, 18)]; Tp = Tn + To; T1o = Tn - To; T11 = ii[WS(is, 8)]; T12 = ii[WS(is, 18)]; T13 = T11 - T12; T2u = T11 + T12; } { E Tq, Tr, T1p, T1q; Tq = ri[WS(is, 13)]; Tr = ri[WS(is, 3)]; Ts = Tq + Tr; T14 = Tq - Tr; T1p = ii[WS(is, 13)]; T1q = ii[WS(is, 3)]; T1r = T1p - T1q; T2v = T1p + T1q; } { E Tu, Tv, T16, T17; Tu = ri[WS(is, 12)]; Tv = ri[WS(is, 2)]; Tw = Tu + Tv; T1t = Tu - Tv; T16 = ii[WS(is, 12)]; T17 = ii[WS(is, 2)]; T18 = T16 - T17; T2x = T16 + T17; } { E Tx, Ty, T1u, T1v; Tx = ri[WS(is, 17)]; Ty = ri[WS(is, 7)]; Tz = Tx + Ty; T19 = Tx - Ty; T1u = ii[WS(is, 17)]; T1v = ii[WS(is, 7)]; T1w = T1u - T1v; T2y = T1u + T1v; } Tt = Tp - Ts; TA = Tw - Tz; TB = Tt + TA; T2w = T2u - T2v; T2z = T2x - T2y; T2S = T2w + T2z; T35 = T2u + T2v; T36 = T2x + T2y; T3f = T35 + T36; TH = Tp + Ts; TI = Tw + Tz; TJ = TH + TI; T15 = T13 - T14; T1a = T18 - T19; T1b = T15 + T1a; T1s = T1o - T1r; T1x = T1t - T1w; T1W = T1s + T1x; T29 = T1o + T1r; T2a = T1t + T1w; T2j = T29 + T2a; T1h = T14 + T13; T1i = T19 + T18; T1j = T1h + T1i; } { E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H; E T2F; { E T8, T9, TQ, TR; T8 = ri[WS(is, 4)]; T9 = ri[WS(is, 14)]; Ta = T8 + T9; T1z = T8 - T9; TQ = ii[WS(is, 4)]; TR = ii[WS(is, 14)]; TS = TQ - TR; T2B = TQ + TR; } { E Tb, Tc, T1A, T1B; Tb = ri[WS(is, 9)]; Tc = ri[WS(is, 19)]; Td = Tb + Tc; TT = Tb - Tc; T1A = ii[WS(is, 9)]; T1B = ii[WS(is, 19)]; T1C = T1A - T1B; T2C = T1A + T1B; } { E Tf, Tg, TV, TW; Tf = ri[WS(is, 16)]; Tg = ri[WS(is, 6)]; Th = Tf + Tg; T1E = Tf - Tg; TV = ii[WS(is, 16)]; TW = ii[WS(is, 6)]; TX = TV - TW; T2E = TV + TW; } { E Ti, Tj, T1F, T1G; Ti = ri[WS(is, 1)]; Tj = ri[WS(is, 11)]; Tk = Ti + Tj; TY = Ti - Tj; T1F = ii[WS(is, 1)]; T1G = ii[WS(is, 11)]; T1H = T1F - T1G; T2F = T1F + T1G; } Te = Ta - Td; Tl = Th - Tk; Tm = Te + Tl; T2D = T2B - T2C; T2G = T2E - T2F; T2R = T2D + T2G; T32 = T2B + T2C; T33 = T2E + T2F; T3e = T32 + T33; TE = Ta + Td; TF = Th + Tk; TG = TE + TF; TU = TS - TT; TZ = TX - TY; T10 = TU + TZ; T1D = T1z - T1C; T1I = T1E - T1H; T1V = T1D + T1I; T26 = T1z + T1C; T27 = T1E + T1H; T2i = T26 + T27; T1e = TT + TS; T1f = TY + TX; T1g = T1e + T1f; } { E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t; T2s = KP559016994 * (Tm - TB); TC = Tm + TB; T2r = FNMS(KP250000000, TC, T7); T2A = T2w - T2z; T2H = T2D - T2G; T2I = FNMS(KP587785252, T2H, KP951056516 * T2A); T2K = FMA(KP951056516, T2H, KP587785252 * T2A); ro[WS(os, 10)] = T7 + TC; T2J = T2s + T2r; ro[WS(os, 14)] = T2J - T2K; ro[WS(os, 6)] = T2J + T2K; T2t = T2r - T2s; ro[WS(os, 2)] = T2t - T2I; ro[WS(os, 18)] = T2t + T2I; } { E T2V, T2T, T2U, T2N, T2Y, T2L, T2M, T2X, T2W; T2V = KP559016994 * (T2R - T2S); T2T = T2R + T2S; T2U = FNMS(KP250000000, T2T, T2Q); T2L = Tt - TA; T2M = Te - Tl; T2N = FNMS(KP587785252, T2M, KP951056516 * T2L); T2Y = FMA(KP951056516, T2M, KP587785252 * T2L); io[WS(os, 10)] = T2Q + T2T; T2X = T2V + T2U; io[WS(os, 6)] = T2X - T2Y; io[WS(os, 14)] = T2Y + T2X; T2W = T2U - T2V; io[WS(os, 2)] = T2N + T2W; io[WS(os, 18)] = T2W - T2N; } { E T2Z, TK, T30, T38, T3a, T34, T37, T39, T31; T2Z = KP559016994 * (TG - TJ); TK = TG + TJ; T30 = FNMS(KP250000000, TK, TD); T34 = T32 - T33; T37 = T35 - T36; T38 = FMA(KP951056516, T34, KP587785252 * T37); T3a = FNMS(KP587785252, T34, KP951056516 * T37); ro[0] = TD + TK; T39 = T30 - T2Z; ro[WS(os, 12)] = T39 - T3a; ro[WS(os, 8)] = T39 + T3a; T31 = T2Z + T30; ro[WS(os, 4)] = T31 - T38; ro[WS(os, 16)] = T31 + T38; } { E T3g, T3i, T3j, T3d, T3m, T3b, T3c, T3l, T3k; T3g = KP559016994 * (T3e - T3f); T3i = T3e + T3f; T3j = FNMS(KP250000000, T3i, T3h); T3b = TE - TF; T3c = TH - TI; T3d = FMA(KP951056516, T3b, KP587785252 * T3c); T3m = FNMS(KP587785252, T3b, KP951056516 * T3c); io[0] = T3h + T3i; T3l = T3j - T3g; io[WS(os, 8)] = T3l - T3m; io[WS(os, 12)] = T3m + T3l; T3k = T3g + T3j; io[WS(os, 4)] = T3d + T3k; io[WS(os, 16)] = T3k - T3d; } { E T23, T1c, T24, T2c, T2e, T28, T2b, T2d, T25; T23 = KP559016994 * (T10 - T1b); T1c = T10 + T1b; T24 = FNMS(KP250000000, T1c, TP); T28 = T26 - T27; T2b = T29 - T2a; T2c = FMA(KP951056516, T28, KP587785252 * T2b); T2e = FNMS(KP587785252, T28, KP951056516 * T2b); io[WS(os, 5)] = TP + T1c; T2d = T24 - T23; io[WS(os, 13)] = T2d - T2e; io[WS(os, 17)] = T2d + T2e; T25 = T23 + T24; io[WS(os, 1)] = T25 - T2c; io[WS(os, 9)] = T25 + T2c; } { E T2k, T2m, T2n, T2h, T2p, T2f, T2g, T2q, T2o; T2k = KP559016994 * (T2i - T2j); T2m = T2i + T2j; T2n = FNMS(KP250000000, T2m, T2l); T2f = TU - TZ; T2g = T15 - T1a; T2h = FMA(KP951056516, T2f, KP587785252 * T2g); T2p = FNMS(KP587785252, T2f, KP951056516 * T2g); ro[WS(os, 5)] = T2l + T2m; T2q = T2n - T2k; ro[WS(os, 13)] = T2p + T2q; ro[WS(os, 17)] = T2q - T2p; T2o = T2k + T2n; ro[WS(os, 1)] = T2h + T2o; ro[WS(os, 9)] = T2o - T2h; } { E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n; T1m = KP559016994 * (T1g - T1j); T1k = T1g + T1j; T1l = FNMS(KP250000000, T1k, T1d); T1y = T1s - T1x; T1J = T1D - T1I; T1K = FNMS(KP587785252, T1J, KP951056516 * T1y); T1M = FMA(KP951056516, T1J, KP587785252 * T1y); io[WS(os, 15)] = T1d + T1k; T1L = T1m + T1l; io[WS(os, 11)] = T1L - T1M; io[WS(os, 19)] = T1L + T1M; T1n = T1l - T1m; io[WS(os, 3)] = T1n - T1K; io[WS(os, 7)] = T1n + T1K; } { E T1Z, T1X, T1Y, T1P, T21, T1N, T1O, T22, T20; T1Z = KP559016994 * (T1V - T1W); T1X = T1V + T1W; T1Y = FNMS(KP250000000, T1X, T1U); T1N = T1h - T1i; T1O = T1e - T1f; T1P = FNMS(KP587785252, T1O, KP951056516 * T1N); T21 = FMA(KP951056516, T1O, KP587785252 * T1N); ro[WS(os, 15)] = T1U + T1X; T22 = T1Z + T1Y; ro[WS(os, 11)] = T21 + T22; ro[WS(os, 19)] = T22 - T21; T20 = T1Y - T1Z; ro[WS(os, 3)] = T1P + T20; ro[WS(os, 7)] = T20 - T1P; } } } } static const kdft_desc desc = { 20, "n1_20", {184, 24, 24, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_20) (planner *p) { X(kdft_register) (p, n1_20, &desc); } #endif