/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:10 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */ /* * This function contains 60 FP additions, 42 FP multiplications, * (or, 18 additions, 0 multiplications, 42 fused multiply/add), * 41 stack variables, 6 constants, and 28 memory accesses */ #include "dft/scalar/n.h" static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP974927912, +0.974927912181823607018131682993931217232785801); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP692021471, +0.692021471630095869627814897002069140197260599); DK(KP801937735, +0.801937735804838252472204639014890102331838324); DK(KP554958132, +0.554958132087371191422194871006410481067288862); DK(KP356895867, +0.356895867892209443894399510021300583399127187); { INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { E T1, Tz, T4, TI, Ta, TG, T7, TH, Tb, Tp, TT, TO, TJ, Tu, Tg; E TB, Tm, TC, Tj, TA, Tn, Ts, TQ, TL, TD, Tx; T1 = ri[0]; Tz = ii[0]; { E T2, T3, Te, Tf; T2 = ri[WS(is, 1)]; T3 = ri[WS(is, 6)]; T4 = T2 + T3; TI = T3 - T2; { E T8, T9, T5, T6; T8 = ri[WS(is, 3)]; T9 = ri[WS(is, 4)]; Ta = T8 + T9; TG = T9 - T8; T5 = ri[WS(is, 2)]; T6 = ri[WS(is, 5)]; T7 = T5 + T6; TH = T6 - T5; } Tb = FNMS(KP356895867, T7, T4); Tp = FNMS(KP356895867, T4, Ta); TT = FMA(KP554958132, TG, TI); TO = FMA(KP554958132, TH, TG); TJ = FNMS(KP554958132, TI, TH); Tu = FNMS(KP356895867, Ta, T7); Te = ii[WS(is, 2)]; Tf = ii[WS(is, 5)]; Tg = Te - Tf; TB = Te + Tf; { E Tk, Tl, Th, Ti; Tk = ii[WS(is, 3)]; Tl = ii[WS(is, 4)]; Tm = Tk - Tl; TC = Tk + Tl; Th = ii[WS(is, 1)]; Ti = ii[WS(is, 6)]; Tj = Th - Ti; TA = Th + Ti; } Tn = FMA(KP554958132, Tm, Tj); Ts = FMA(KP554958132, Tg, Tm); TQ = FNMS(KP356895867, TB, TA); TL = FNMS(KP356895867, TA, TC); TD = FNMS(KP356895867, TC, TB); Tx = FNMS(KP554958132, Tj, Tg); } ro[0] = T1 + T4 + T7 + Ta; io[0] = Tz + TA + TB + TC; { E To, Td, Tc, TU, TS, TR; To = FMA(KP801937735, Tn, Tg); Tc = FNMS(KP692021471, Tb, Ta); Td = FNMS(KP900968867, Tc, T1); ro[WS(os, 6)] = FNMS(KP974927912, To, Td); ro[WS(os, 1)] = FMA(KP974927912, To, Td); TU = FMA(KP801937735, TT, TH); TR = FNMS(KP692021471, TQ, TC); TS = FNMS(KP900968867, TR, Tz); io[WS(os, 1)] = FMA(KP974927912, TU, TS); io[WS(os, 6)] = FNMS(KP974927912, TU, TS); } { E Tt, Tr, Tq, TP, TN, TM; Tt = FNMS(KP801937735, Ts, Tj); Tq = FNMS(KP692021471, Tp, T7); Tr = FNMS(KP900968867, Tq, T1); ro[WS(os, 5)] = FNMS(KP974927912, Tt, Tr); ro[WS(os, 2)] = FMA(KP974927912, Tt, Tr); TP = FNMS(KP801937735, TO, TI); TM = FNMS(KP692021471, TL, TB); TN = FNMS(KP900968867, TM, Tz); io[WS(os, 2)] = FMA(KP974927912, TP, TN); io[WS(os, 5)] = FNMS(KP974927912, TP, TN); } { E Ty, Tw, Tv, TK, TF, TE; Ty = FNMS(KP801937735, Tx, Tm); Tv = FNMS(KP692021471, Tu, T4); Tw = FNMS(KP900968867, Tv, T1); ro[WS(os, 4)] = FNMS(KP974927912, Ty, Tw); ro[WS(os, 3)] = FMA(KP974927912, Ty, Tw); TK = FNMS(KP801937735, TJ, TG); TE = FNMS(KP692021471, TD, TA); TF = FNMS(KP900968867, TE, Tz); io[WS(os, 3)] = FMA(KP974927912, TK, TF); io[WS(os, 4)] = FNMS(KP974927912, TK, TF); } } } } static const kdft_desc desc = { 7, "n1_7", {18, 0, 42, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc); } #else /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */ /* * This function contains 60 FP additions, 36 FP multiplications, * (or, 36 additions, 12 multiplications, 24 fused multiply/add), * 25 stack variables, 6 constants, and 28 memory accesses */ #include "dft/scalar/n.h" static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DK(KP222520933, +0.222520933956314404288902564496794759466355569); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP623489801, +0.623489801858733530525004884004239810632274731); DK(KP433883739, +0.433883739117558120475768332848358754609990728); DK(KP781831482, +0.781831482468029808708444526674057750232334519); DK(KP974927912, +0.974927912181823607018131682993931217232785801); { INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { E T1, Tu, T4, Tq, Te, Tx, T7, Ts, Tk, Tv, Ta, Tr, Th, Tw; T1 = ri[0]; Tu = ii[0]; { E T2, T3, Tc, Td; T2 = ri[WS(is, 1)]; T3 = ri[WS(is, 6)]; T4 = T2 + T3; Tq = T3 - T2; Tc = ii[WS(is, 1)]; Td = ii[WS(is, 6)]; Te = Tc - Td; Tx = Tc + Td; } { E T5, T6, Ti, Tj; T5 = ri[WS(is, 2)]; T6 = ri[WS(is, 5)]; T7 = T5 + T6; Ts = T6 - T5; Ti = ii[WS(is, 2)]; Tj = ii[WS(is, 5)]; Tk = Ti - Tj; Tv = Ti + Tj; } { E T8, T9, Tf, Tg; T8 = ri[WS(is, 3)]; T9 = ri[WS(is, 4)]; Ta = T8 + T9; Tr = T9 - T8; Tf = ii[WS(is, 3)]; Tg = ii[WS(is, 4)]; Th = Tf - Tg; Tw = Tf + Tg; } ro[0] = T1 + T4 + T7 + Ta; io[0] = Tu + Tx + Tv + Tw; { E Tl, Tb, TB, TC; Tl = FNMS(KP781831482, Th, KP974927912 * Te) - (KP433883739 * Tk); Tb = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4); ro[WS(os, 5)] = Tb - Tl; ro[WS(os, 2)] = Tb + Tl; TB = FNMS(KP781831482, Tr, KP974927912 * Tq) - (KP433883739 * Ts); TC = FMA(KP623489801, Tw, Tu) + FNMA(KP900968867, Tv, KP222520933 * Tx); io[WS(os, 2)] = TB + TC; io[WS(os, 5)] = TC - TB; } { E Tn, Tm, Tz, TA; Tn = FMA(KP781831482, Te, KP974927912 * Tk) + (KP433883739 * Th); Tm = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7); ro[WS(os, 6)] = Tm - Tn; ro[WS(os, 1)] = Tm + Tn; Tz = FMA(KP781831482, Tq, KP974927912 * Ts) + (KP433883739 * Tr); TA = FMA(KP623489801, Tx, Tu) + FNMA(KP900968867, Tw, KP222520933 * Tv); io[WS(os, 1)] = Tz + TA; io[WS(os, 6)] = TA - Tz; } { E Tp, To, Tt, Ty; Tp = FMA(KP433883739, Te, KP974927912 * Th) - (KP781831482 * Tk); To = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4); ro[WS(os, 4)] = To - Tp; ro[WS(os, 3)] = To + Tp; Tt = FMA(KP433883739, Tq, KP974927912 * Tr) - (KP781831482 * Ts); Ty = FMA(KP623489801, Tv, Tu) + FNMA(KP222520933, Tw, KP900968867 * Tx); io[WS(os, 3)] = Tt + Ty; io[WS(os, 4)] = Ty - Tt; } } } } static const kdft_desc desc = { 7, "n1_7", {36, 12, 24, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc); } #endif