/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:30 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */ /* * This function contains 48 FP additions, 42 FP multiplications, * (or, 18 additions, 12 multiplications, 30 fused multiply/add), * 35 stack variables, 2 constants, and 36 memory accesses */ #include "dft/scalar/q.h" static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { E T1, T4, T6, Tg, Td, Te, T9, Tf, Tp, Ts, Tu, TE, TB, TC, Tx; E TD, TZ, T10, TV, T11, TN, TQ, TS, T12; { E T2, T3, Tv, Tw; T1 = rio[0]; T2 = rio[WS(rs, 1)]; T3 = rio[WS(rs, 2)]; T4 = T2 + T3; T6 = FNMS(KP500000000, T4, T1); Tg = T3 - T2; { E T7, T8, Tq, Tr; Td = iio[0]; T7 = iio[WS(rs, 1)]; T8 = iio[WS(rs, 2)]; Te = T7 + T8; T9 = T7 - T8; Tf = FNMS(KP500000000, Te, Td); Tp = rio[WS(vs, 1)]; Tq = rio[WS(vs, 1) + WS(rs, 1)]; Tr = rio[WS(vs, 1) + WS(rs, 2)]; Ts = Tq + Tr; Tu = FNMS(KP500000000, Ts, Tp); TE = Tr - Tq; } TB = iio[WS(vs, 1)]; Tv = iio[WS(vs, 1) + WS(rs, 1)]; Tw = iio[WS(vs, 1) + WS(rs, 2)]; TC = Tv + Tw; Tx = Tv - Tw; TD = FNMS(KP500000000, TC, TB); { E TT, TU, TO, TP; TZ = iio[WS(vs, 2)]; TT = iio[WS(vs, 2) + WS(rs, 1)]; TU = iio[WS(vs, 2) + WS(rs, 2)]; T10 = TT + TU; TV = TT - TU; T11 = FNMS(KP500000000, T10, TZ); TN = rio[WS(vs, 2)]; TO = rio[WS(vs, 2) + WS(rs, 1)]; TP = rio[WS(vs, 2) + WS(rs, 2)]; TQ = TO + TP; TS = FNMS(KP500000000, TQ, TN); T12 = TP - TO; } } rio[0] = T1 + T4; iio[0] = Td + Te; rio[WS(rs, 1)] = Tp + Ts; iio[WS(rs, 1)] = TB + TC; iio[WS(rs, 2)] = TZ + T10; rio[WS(rs, 2)] = TN + TQ; { E Ta, Th, Tb, Ti, T5, Tc; Ta = FMA(KP866025403, T9, T6); Th = FMA(KP866025403, Tg, Tf); T5 = W[0]; Tb = T5 * Ta; Ti = T5 * Th; Tc = W[1]; rio[WS(vs, 1)] = FMA(Tc, Th, Tb); iio[WS(vs, 1)] = FNMS(Tc, Ta, Ti); } { E T16, T19, T17, T1a, T15, T18; T16 = FNMS(KP866025403, TV, TS); T19 = FNMS(KP866025403, T12, T11); T15 = W[2]; T17 = T15 * T16; T1a = T15 * T19; T18 = W[3]; rio[WS(vs, 2) + WS(rs, 2)] = FMA(T18, T19, T17); iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T18, T16, T1a); } { E TI, TL, TJ, TM, TH, TK; TI = FNMS(KP866025403, Tx, Tu); TL = FNMS(KP866025403, TE, TD); TH = W[2]; TJ = TH * TI; TM = TH * TL; TK = W[3]; rio[WS(vs, 2) + WS(rs, 1)] = FMA(TK, TL, TJ); iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TK, TI, TM); } { E Ty, TF, Tz, TG, Tt, TA; Ty = FMA(KP866025403, Tx, Tu); TF = FMA(KP866025403, TE, TD); Tt = W[0]; Tz = Tt * Ty; TG = Tt * TF; TA = W[1]; rio[WS(vs, 1) + WS(rs, 1)] = FMA(TA, TF, Tz); iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TA, Ty, TG); } { E TW, T13, TX, T14, TR, TY; TW = FMA(KP866025403, TV, TS); T13 = FMA(KP866025403, T12, T11); TR = W[0]; TX = TR * TW; T14 = TR * T13; TY = W[1]; rio[WS(vs, 1) + WS(rs, 2)] = FMA(TY, T13, TX); iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TY, TW, T14); } { E Tk, Tn, Tl, To, Tj, Tm; Tk = FNMS(KP866025403, T9, T6); Tn = FNMS(KP866025403, Tg, Tf); Tj = W[2]; Tl = Tj * Tk; To = Tj * Tn; Tm = W[3]; rio[WS(vs, 2)] = FMA(Tm, Tn, Tl); iio[WS(vs, 2)] = FNMS(Tm, Tk, To); } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 3}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, {18, 12, 30, 0}, 0, 0, 0 }; void X(codelet_q1_3) (planner *p) { X(kdft_difsq_register) (p, q1_3, &desc); } #else /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include dft/scalar/q.h */ /* * This function contains 48 FP additions, 36 FP multiplications, * (or, 30 additions, 18 multiplications, 18 fused multiply/add), * 35 stack variables, 2 constants, and 36 memory accesses */ #include "dft/scalar/q.h" static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { E T1, T4, T6, Tc, Td, Te, T9, Tf, Tl, To, Tq, Tw, Tx, Ty, Tt; E Tz, TR, TS, TN, TT, TF, TI, TK, TQ; { E T2, T3, Tr, Ts; T1 = rio[0]; T2 = rio[WS(rs, 1)]; T3 = rio[WS(rs, 2)]; T4 = T2 + T3; T6 = FNMS(KP500000000, T4, T1); Tc = KP866025403 * (T3 - T2); { E T7, T8, Tm, Tn; Td = iio[0]; T7 = iio[WS(rs, 1)]; T8 = iio[WS(rs, 2)]; Te = T7 + T8; T9 = KP866025403 * (T7 - T8); Tf = FNMS(KP500000000, Te, Td); Tl = rio[WS(vs, 1)]; Tm = rio[WS(vs, 1) + WS(rs, 1)]; Tn = rio[WS(vs, 1) + WS(rs, 2)]; To = Tm + Tn; Tq = FNMS(KP500000000, To, Tl); Tw = KP866025403 * (Tn - Tm); } Tx = iio[WS(vs, 1)]; Tr = iio[WS(vs, 1) + WS(rs, 1)]; Ts = iio[WS(vs, 1) + WS(rs, 2)]; Ty = Tr + Ts; Tt = KP866025403 * (Tr - Ts); Tz = FNMS(KP500000000, Ty, Tx); { E TL, TM, TG, TH; TR = iio[WS(vs, 2)]; TL = iio[WS(vs, 2) + WS(rs, 1)]; TM = iio[WS(vs, 2) + WS(rs, 2)]; TS = TL + TM; TN = KP866025403 * (TL - TM); TT = FNMS(KP500000000, TS, TR); TF = rio[WS(vs, 2)]; TG = rio[WS(vs, 2) + WS(rs, 1)]; TH = rio[WS(vs, 2) + WS(rs, 2)]; TI = TG + TH; TK = FNMS(KP500000000, TI, TF); TQ = KP866025403 * (TH - TG); } } rio[0] = T1 + T4; iio[0] = Td + Te; rio[WS(rs, 1)] = Tl + To; iio[WS(rs, 1)] = Tx + Ty; iio[WS(rs, 2)] = TR + TS; rio[WS(rs, 2)] = TF + TI; { E Ta, Tg, T5, Tb; Ta = T6 + T9; Tg = Tc + Tf; T5 = W[0]; Tb = W[1]; rio[WS(vs, 1)] = FMA(T5, Ta, Tb * Tg); iio[WS(vs, 1)] = FNMS(Tb, Ta, T5 * Tg); } { E TW, TY, TV, TX; TW = TK - TN; TY = TT - TQ; TV = W[2]; TX = W[3]; rio[WS(vs, 2) + WS(rs, 2)] = FMA(TV, TW, TX * TY); iio[WS(vs, 2) + WS(rs, 2)] = FNMS(TX, TW, TV * TY); } { E TC, TE, TB, TD; TC = Tq - Tt; TE = Tz - Tw; TB = W[2]; TD = W[3]; rio[WS(vs, 2) + WS(rs, 1)] = FMA(TB, TC, TD * TE); iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TD, TC, TB * TE); } { E Tu, TA, Tp, Tv; Tu = Tq + Tt; TA = Tw + Tz; Tp = W[0]; Tv = W[1]; rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tp, Tu, Tv * TA); iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Tv, Tu, Tp * TA); } { E TO, TU, TJ, TP; TO = TK + TN; TU = TQ + TT; TJ = W[0]; TP = W[1]; rio[WS(vs, 1) + WS(rs, 2)] = FMA(TJ, TO, TP * TU); iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TP, TO, TJ * TU); } { E Ti, Tk, Th, Tj; Ti = T6 - T9; Tk = Tf - Tc; Th = W[2]; Tj = W[3]; rio[WS(vs, 2)] = FMA(Th, Ti, Tj * Tk); iio[WS(vs, 2)] = FNMS(Tj, Ti, Th * Tk); } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 3}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, {30, 18, 18, 0}, 0, 0, 0 }; void X(codelet_q1_3) (planner *p) { X(kdft_difsq_register) (p, q1_3, &desc); } #endif