/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:29 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */ /* * This function contains 88 FP additions, 48 FP multiplications, * (or, 64 additions, 24 multiplications, 24 fused multiply/add), * 51 stack variables, 0 constants, and 64 memory accesses */ #include "dft/scalar/q.h" static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { E T3, Tv, Tw, T6, Tc, Tf, Tx, Ts, Tm, Ti, T1H, T29, T2a, T1K, T1Q; E T1T, T2b, T26, T20, T1W, TB, T13, T14, TE, TK, TN, T15, T10, TU, TQ; E T19, T1B, T1C, T1c, T1i, T1l, T1D, T1y, T1s, T1o; { E T1, T2, Tb, Tg, Th, T8; { E T9, Ta, T4, T5; T1 = rio[0]; T2 = rio[WS(rs, 2)]; T3 = T1 + T2; T9 = iio[0]; Ta = iio[WS(rs, 2)]; Tb = T9 - Ta; Tv = T9 + Ta; Tg = iio[WS(rs, 1)]; Th = iio[WS(rs, 3)]; Tw = Tg + Th; T4 = rio[WS(rs, 1)]; T5 = rio[WS(rs, 3)]; T6 = T4 + T5; T8 = T4 - T5; } Tc = T8 + Tb; Tf = T1 - T2; Tx = Tv - Tw; Ts = T3 - T6; Tm = Tb - T8; Ti = Tg - Th; } { E T1F, T1G, T1P, T1U, T1V, T1M; { E T1N, T1O, T1I, T1J; T1F = rio[WS(vs, 3)]; T1G = rio[WS(vs, 3) + WS(rs, 2)]; T1H = T1F + T1G; T1N = iio[WS(vs, 3)]; T1O = iio[WS(vs, 3) + WS(rs, 2)]; T1P = T1N - T1O; T29 = T1N + T1O; T1U = iio[WS(vs, 3) + WS(rs, 1)]; T1V = iio[WS(vs, 3) + WS(rs, 3)]; T2a = T1U + T1V; T1I = rio[WS(vs, 3) + WS(rs, 1)]; T1J = rio[WS(vs, 3) + WS(rs, 3)]; T1K = T1I + T1J; T1M = T1I - T1J; } T1Q = T1M + T1P; T1T = T1F - T1G; T2b = T29 - T2a; T26 = T1H - T1K; T20 = T1P - T1M; T1W = T1U - T1V; } { E Tz, TA, TJ, TO, TP, TG; { E TH, TI, TC, TD; Tz = rio[WS(vs, 1)]; TA = rio[WS(vs, 1) + WS(rs, 2)]; TB = Tz + TA; TH = iio[WS(vs, 1)]; TI = iio[WS(vs, 1) + WS(rs, 2)]; TJ = TH - TI; T13 = TH + TI; TO = iio[WS(vs, 1) + WS(rs, 1)]; TP = iio[WS(vs, 1) + WS(rs, 3)]; T14 = TO + TP; TC = rio[WS(vs, 1) + WS(rs, 1)]; TD = rio[WS(vs, 1) + WS(rs, 3)]; TE = TC + TD; TG = TC - TD; } TK = TG + TJ; TN = Tz - TA; T15 = T13 - T14; T10 = TB - TE; TU = TJ - TG; TQ = TO - TP; } { E T17, T18, T1h, T1m, T1n, T1e; { E T1f, T1g, T1a, T1b; T17 = rio[WS(vs, 2)]; T18 = rio[WS(vs, 2) + WS(rs, 2)]; T19 = T17 + T18; T1f = iio[WS(vs, 2)]; T1g = iio[WS(vs, 2) + WS(rs, 2)]; T1h = T1f - T1g; T1B = T1f + T1g; T1m = iio[WS(vs, 2) + WS(rs, 1)]; T1n = iio[WS(vs, 2) + WS(rs, 3)]; T1C = T1m + T1n; T1a = rio[WS(vs, 2) + WS(rs, 1)]; T1b = rio[WS(vs, 2) + WS(rs, 3)]; T1c = T1a + T1b; T1e = T1a - T1b; } T1i = T1e + T1h; T1l = T17 - T18; T1D = T1B - T1C; T1y = T19 - T1c; T1s = T1h - T1e; T1o = T1m - T1n; } rio[0] = T3 + T6; iio[0] = Tv + Tw; rio[WS(rs, 1)] = TB + TE; iio[WS(rs, 1)] = T13 + T14; rio[WS(rs, 2)] = T19 + T1c; iio[WS(rs, 2)] = T1B + T1C; iio[WS(rs, 3)] = T29 + T2a; rio[WS(rs, 3)] = T1H + T1K; { E Tt, Ty, Tr, Tu; Tr = W[2]; Tt = Tr * Ts; Ty = Tr * Tx; Tu = W[3]; rio[WS(vs, 2)] = FMA(Tu, Tx, Tt); iio[WS(vs, 2)] = FNMS(Tu, Ts, Ty); } { E T27, T2c, T25, T28; T25 = W[2]; T27 = T25 * T26; T2c = T25 * T2b; T28 = W[3]; rio[WS(vs, 2) + WS(rs, 3)] = FMA(T28, T2b, T27); iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T28, T26, T2c); } { E T11, T16, TZ, T12; TZ = W[2]; T11 = TZ * T10; T16 = TZ * T15; T12 = W[3]; rio[WS(vs, 2) + WS(rs, 1)] = FMA(T12, T15, T11); iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T12, T10, T16); } { E T1z, T1E, T1x, T1A; T1x = W[2]; T1z = T1x * T1y; T1E = T1x * T1D; T1A = W[3]; rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1A, T1D, T1z); iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1A, T1y, T1E); } { E Tj, Te, Tk, T7, Td; Tj = Tf - Ti; Te = W[5]; Tk = Te * Tc; T7 = W[4]; Td = T7 * Tc; iio[WS(vs, 3)] = FNMS(Te, Tj, Td); rio[WS(vs, 3)] = FMA(T7, Tj, Tk); } { E T1p, T1k, T1q, T1d, T1j; T1p = T1l - T1o; T1k = W[5]; T1q = T1k * T1i; T1d = W[4]; T1j = T1d * T1i; iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T1k, T1p, T1j); rio[WS(vs, 3) + WS(rs, 2)] = FMA(T1d, T1p, T1q); } { E T23, T22, T24, T1Z, T21; T23 = T1T + T1W; T22 = W[1]; T24 = T22 * T20; T1Z = W[0]; T21 = T1Z * T20; iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T22, T23, T21); rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1Z, T23, T24); } { E TX, TW, TY, TT, TV; TX = TN + TQ; TW = W[1]; TY = TW * TU; TT = W[0]; TV = TT * TU; iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TW, TX, TV); rio[WS(vs, 1) + WS(rs, 1)] = FMA(TT, TX, TY); } { E TR, TM, TS, TF, TL; TR = TN - TQ; TM = W[5]; TS = TM * TK; TF = W[4]; TL = TF * TK; iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TM, TR, TL); rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TR, TS); } { E Tp, To, Tq, Tl, Tn; Tp = Tf + Ti; To = W[1]; Tq = To * Tm; Tl = W[0]; Tn = Tl * Tm; iio[WS(vs, 1)] = FNMS(To, Tp, Tn); rio[WS(vs, 1)] = FMA(Tl, Tp, Tq); } { E T1v, T1u, T1w, T1r, T1t; T1v = T1l + T1o; T1u = W[1]; T1w = T1u * T1s; T1r = W[0]; T1t = T1r * T1s; iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1u, T1v, T1t); rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1r, T1v, T1w); } { E T1X, T1S, T1Y, T1L, T1R; T1X = T1T - T1W; T1S = W[5]; T1Y = T1S * T1Q; T1L = W[4]; T1R = T1L * T1Q; iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1S, T1X, T1R); rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1L, T1X, T1Y); } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 4}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, {64, 24, 24, 0}, 0, 0, 0 }; void X(codelet_q1_4) (planner *p) { X(kdft_difsq_register) (p, q1_4, &desc); } #else /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */ /* * This function contains 88 FP additions, 48 FP multiplications, * (or, 64 additions, 24 multiplications, 24 fused multiply/add), * 37 stack variables, 0 constants, and 64 memory accesses */ #include "dft/scalar/q.h" static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { E T3, Te, Tb, Tq, T6, T8, Th, Tr, Tv, TG, TD, TS, Ty, TA, TJ; E TT, TX, T18, T15, T1k, T10, T12, T1b, T1l, T1p, T1A, T1x, T1M, T1s, T1u; E T1D, T1N; { E T1, T2, T9, Ta; T1 = rio[0]; T2 = rio[WS(rs, 2)]; T3 = T1 + T2; Te = T1 - T2; T9 = iio[0]; Ta = iio[WS(rs, 2)]; Tb = T9 - Ta; Tq = T9 + Ta; } { E T4, T5, Tf, Tg; T4 = rio[WS(rs, 1)]; T5 = rio[WS(rs, 3)]; T6 = T4 + T5; T8 = T4 - T5; Tf = iio[WS(rs, 1)]; Tg = iio[WS(rs, 3)]; Th = Tf - Tg; Tr = Tf + Tg; } { E Tt, Tu, TB, TC; Tt = rio[WS(vs, 1)]; Tu = rio[WS(vs, 1) + WS(rs, 2)]; Tv = Tt + Tu; TG = Tt - Tu; TB = iio[WS(vs, 1)]; TC = iio[WS(vs, 1) + WS(rs, 2)]; TD = TB - TC; TS = TB + TC; } { E Tw, Tx, TH, TI; Tw = rio[WS(vs, 1) + WS(rs, 1)]; Tx = rio[WS(vs, 1) + WS(rs, 3)]; Ty = Tw + Tx; TA = Tw - Tx; TH = iio[WS(vs, 1) + WS(rs, 1)]; TI = iio[WS(vs, 1) + WS(rs, 3)]; TJ = TH - TI; TT = TH + TI; } { E TV, TW, T13, T14; TV = rio[WS(vs, 2)]; TW = rio[WS(vs, 2) + WS(rs, 2)]; TX = TV + TW; T18 = TV - TW; T13 = iio[WS(vs, 2)]; T14 = iio[WS(vs, 2) + WS(rs, 2)]; T15 = T13 - T14; T1k = T13 + T14; } { E TY, TZ, T19, T1a; TY = rio[WS(vs, 2) + WS(rs, 1)]; TZ = rio[WS(vs, 2) + WS(rs, 3)]; T10 = TY + TZ; T12 = TY - TZ; T19 = iio[WS(vs, 2) + WS(rs, 1)]; T1a = iio[WS(vs, 2) + WS(rs, 3)]; T1b = T19 - T1a; T1l = T19 + T1a; } { E T1n, T1o, T1v, T1w; T1n = rio[WS(vs, 3)]; T1o = rio[WS(vs, 3) + WS(rs, 2)]; T1p = T1n + T1o; T1A = T1n - T1o; T1v = iio[WS(vs, 3)]; T1w = iio[WS(vs, 3) + WS(rs, 2)]; T1x = T1v - T1w; T1M = T1v + T1w; } { E T1q, T1r, T1B, T1C; T1q = rio[WS(vs, 3) + WS(rs, 1)]; T1r = rio[WS(vs, 3) + WS(rs, 3)]; T1s = T1q + T1r; T1u = T1q - T1r; T1B = iio[WS(vs, 3) + WS(rs, 1)]; T1C = iio[WS(vs, 3) + WS(rs, 3)]; T1D = T1B - T1C; T1N = T1B + T1C; } rio[0] = T3 + T6; iio[0] = Tq + Tr; rio[WS(rs, 1)] = Tv + Ty; iio[WS(rs, 1)] = TS + TT; rio[WS(rs, 2)] = TX + T10; iio[WS(rs, 2)] = T1k + T1l; iio[WS(rs, 3)] = T1M + T1N; rio[WS(rs, 3)] = T1p + T1s; { E Tc, Ti, T7, Td; Tc = T8 + Tb; Ti = Te - Th; T7 = W[4]; Td = W[5]; iio[WS(vs, 3)] = FNMS(Td, Ti, T7 * Tc); rio[WS(vs, 3)] = FMA(Td, Tc, T7 * Ti); } { E T1K, T1O, T1J, T1L; T1K = T1p - T1s; T1O = T1M - T1N; T1J = W[2]; T1L = W[3]; rio[WS(vs, 2) + WS(rs, 3)] = FMA(T1J, T1K, T1L * T1O); iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T1L, T1K, T1J * T1O); } { E Tk, Tm, Tj, Tl; Tk = Tb - T8; Tm = Te + Th; Tj = W[0]; Tl = W[1]; iio[WS(vs, 1)] = FNMS(Tl, Tm, Tj * Tk); rio[WS(vs, 1)] = FMA(Tl, Tk, Tj * Tm); } { E To, Ts, Tn, Tp; To = T3 - T6; Ts = Tq - Tr; Tn = W[2]; Tp = W[3]; rio[WS(vs, 2)] = FMA(Tn, To, Tp * Ts); iio[WS(vs, 2)] = FNMS(Tp, To, Tn * Ts); } { E T16, T1c, T11, T17; T16 = T12 + T15; T1c = T18 - T1b; T11 = W[4]; T17 = W[5]; iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T17, T1c, T11 * T16); rio[WS(vs, 3) + WS(rs, 2)] = FMA(T17, T16, T11 * T1c); } { E T1G, T1I, T1F, T1H; T1G = T1x - T1u; T1I = T1A + T1D; T1F = W[0]; T1H = W[1]; iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T1H, T1I, T1F * T1G); rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1H, T1G, T1F * T1I); } { E TQ, TU, TP, TR; TQ = Tv - Ty; TU = TS - TT; TP = W[2]; TR = W[3]; rio[WS(vs, 2) + WS(rs, 1)] = FMA(TP, TQ, TR * TU); iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TR, TQ, TP * TU); } { E T1e, T1g, T1d, T1f; T1e = T15 - T12; T1g = T18 + T1b; T1d = W[0]; T1f = W[1]; iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e); rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g); } { E T1i, T1m, T1h, T1j; T1i = TX - T10; T1m = T1k - T1l; T1h = W[2]; T1j = W[3]; rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1h, T1i, T1j * T1m); iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1j, T1i, T1h * T1m); } { E T1y, T1E, T1t, T1z; T1y = T1u + T1x; T1E = T1A - T1D; T1t = W[4]; T1z = W[5]; iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1z, T1E, T1t * T1y); rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1z, T1y, T1t * T1E); } { E TM, TO, TL, TN; TM = TD - TA; TO = TG + TJ; TL = W[0]; TN = W[1]; iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TN, TO, TL * TM); rio[WS(vs, 1) + WS(rs, 1)] = FMA(TN, TM, TL * TO); } { E TE, TK, Tz, TF; TE = TA + TD; TK = TG - TJ; Tz = W[4]; TF = W[5]; iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TF, TK, Tz * TE); rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TE, Tz * TK); } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 4}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, {64, 24, 24, 0}, 0, 0, 0 }; void X(codelet_q1_4) (planner *p) { X(kdft_difsq_register) (p, q1_4, &desc); } #endif