/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:14 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */ /* * This function contains 118 FP additions, 68 FP multiplications, * (or, 72 additions, 22 multiplications, 46 fused multiply/add), * 47 stack variables, 2 constants, and 48 memory accesses */ #include "dft/scalar/t.h" static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { E T1, T2i, Tl, T2e, T10, T1Y, TG, T1S, Ty, T2r, T1s, T2f, T1d, T21, T1H; E T1Z, Te, T2o, T1l, T2h, TT, T1V, T1A, T1T; T1 = ri[0]; T2i = ii[0]; { E Th, Tk, Ti, T2d, Tg, Tj; Th = ri[WS(rs, 6)]; Tk = ii[WS(rs, 6)]; Tg = W[10]; Ti = Tg * Th; T2d = Tg * Tk; Tj = W[11]; Tl = FMA(Tj, Tk, Ti); T2e = FNMS(Tj, Th, T2d); } { E TW, TZ, TX, T1X, TV, TY; TW = ri[WS(rs, 9)]; TZ = ii[WS(rs, 9)]; TV = W[16]; TX = TV * TW; T1X = TV * TZ; TY = W[17]; T10 = FMA(TY, TZ, TX); T1Y = FNMS(TY, TW, T1X); } { E TC, TF, TD, T1R, TB, TE; TC = ri[WS(rs, 3)]; TF = ii[WS(rs, 3)]; TB = W[4]; TD = TB * TC; T1R = TB * TF; TE = W[5]; TG = FMA(TE, TF, TD); T1S = FNMS(TE, TC, T1R); } { E Tn, Tq, To, T1o, Tt, Tw, Tu, T1q, Tm, Ts; Tn = ri[WS(rs, 10)]; Tq = ii[WS(rs, 10)]; Tm = W[18]; To = Tm * Tn; T1o = Tm * Tq; Tt = ri[WS(rs, 2)]; Tw = ii[WS(rs, 2)]; Ts = W[2]; Tu = Ts * Tt; T1q = Ts * Tw; { E Tr, T1p, Tx, T1r, Tp, Tv; Tp = W[19]; Tr = FMA(Tp, Tq, To); T1p = FNMS(Tp, Tn, T1o); Tv = W[3]; Tx = FMA(Tv, Tw, Tu); T1r = FNMS(Tv, Tt, T1q); Ty = Tr + Tx; T2r = Tx - Tr; T1s = T1p - T1r; T2f = T1p + T1r; } } { E T12, T15, T13, T1D, T18, T1b, T19, T1F, T11, T17; T12 = ri[WS(rs, 1)]; T15 = ii[WS(rs, 1)]; T11 = W[0]; T13 = T11 * T12; T1D = T11 * T15; T18 = ri[WS(rs, 5)]; T1b = ii[WS(rs, 5)]; T17 = W[8]; T19 = T17 * T18; T1F = T17 * T1b; { E T16, T1E, T1c, T1G, T14, T1a; T14 = W[1]; T16 = FMA(T14, T15, T13); T1E = FNMS(T14, T12, T1D); T1a = W[9]; T1c = FMA(T1a, T1b, T19); T1G = FNMS(T1a, T18, T1F); T1d = T16 + T1c; T21 = T1c - T16; T1H = T1E - T1G; T1Z = T1E + T1G; } } { E T3, T6, T4, T1h, T9, Tc, Ta, T1j, T2, T8; T3 = ri[WS(rs, 4)]; T6 = ii[WS(rs, 4)]; T2 = W[6]; T4 = T2 * T3; T1h = T2 * T6; T9 = ri[WS(rs, 8)]; Tc = ii[WS(rs, 8)]; T8 = W[14]; Ta = T8 * T9; T1j = T8 * Tc; { E T7, T1i, Td, T1k, T5, Tb; T5 = W[7]; T7 = FMA(T5, T6, T4); T1i = FNMS(T5, T3, T1h); Tb = W[15]; Td = FMA(Tb, Tc, Ta); T1k = FNMS(Tb, T9, T1j); Te = T7 + Td; T2o = Td - T7; T1l = T1i - T1k; T2h = T1i + T1k; } } { E TI, TL, TJ, T1w, TO, TR, TP, T1y, TH, TN; TI = ri[WS(rs, 7)]; TL = ii[WS(rs, 7)]; TH = W[12]; TJ = TH * TI; T1w = TH * TL; TO = ri[WS(rs, 11)]; TR = ii[WS(rs, 11)]; TN = W[20]; TP = TN * TO; T1y = TN * TR; { E TM, T1x, TS, T1z, TK, TQ; TK = W[13]; TM = FMA(TK, TL, TJ); T1x = FNMS(TK, TI, T1w); TQ = W[21]; TS = FMA(TQ, TR, TP); T1z = FNMS(TQ, TO, T1y); TT = TM + TS; T1V = TS - TM; T1A = T1x - T1z; T1T = T1x + T1z; } } { E TA, T28, T2k, T2m, T1f, T2l, T2b, T2c; { E Tf, Tz, T2g, T2j; Tf = T1 + Te; Tz = Tl + Ty; TA = Tf + Tz; T28 = Tf - Tz; T2g = T2e + T2f; T2j = T2h + T2i; T2k = T2g + T2j; T2m = T2j - T2g; } { E TU, T1e, T29, T2a; TU = TG + TT; T1e = T10 + T1d; T1f = TU + T1e; T2l = TU - T1e; T29 = T1S + T1T; T2a = T1Y + T1Z; T2b = T29 - T2a; T2c = T29 + T2a; } ri[WS(rs, 6)] = TA - T1f; ii[WS(rs, 6)] = T2k - T2c; ri[0] = TA + T1f; ii[0] = T2c + T2k; ri[WS(rs, 3)] = T28 - T2b; ii[WS(rs, 3)] = T2l + T2m; ri[WS(rs, 9)] = T28 + T2b; ii[WS(rs, 9)] = T2m - T2l; } { E T1m, T1K, T2p, T2y, T2s, T2x, T1t, T1L, T1B, T1N, T1W, T25, T22, T26, T1I; E T1O; { E T1g, T2n, T2q, T1n; T1g = FNMS(KP500000000, Te, T1); T1m = FNMS(KP866025403, T1l, T1g); T1K = FMA(KP866025403, T1l, T1g); T2n = FNMS(KP500000000, T2h, T2i); T2p = FMA(KP866025403, T2o, T2n); T2y = FNMS(KP866025403, T2o, T2n); T2q = FNMS(KP500000000, T2f, T2e); T2s = FMA(KP866025403, T2r, T2q); T2x = FNMS(KP866025403, T2r, T2q); T1n = FNMS(KP500000000, Ty, Tl); T1t = FNMS(KP866025403, T1s, T1n); T1L = FMA(KP866025403, T1s, T1n); } { E T1v, T1U, T20, T1C; T1v = FNMS(KP500000000, TT, TG); T1B = FNMS(KP866025403, T1A, T1v); T1N = FMA(KP866025403, T1A, T1v); T1U = FNMS(KP500000000, T1T, T1S); T1W = FMA(KP866025403, T1V, T1U); T25 = FNMS(KP866025403, T1V, T1U); T20 = FNMS(KP500000000, T1Z, T1Y); T22 = FMA(KP866025403, T21, T20); T26 = FNMS(KP866025403, T21, T20); T1C = FNMS(KP500000000, T1d, T10); T1I = FNMS(KP866025403, T1H, T1C); T1O = FMA(KP866025403, T1H, T1C); } { E T1u, T1J, T2z, T2A; T1u = T1m + T1t; T1J = T1B + T1I; ri[WS(rs, 2)] = T1u - T1J; ri[WS(rs, 8)] = T1u + T1J; T2z = T2x + T2y; T2A = T25 + T26; ii[WS(rs, 2)] = T2z - T2A; ii[WS(rs, 8)] = T2A + T2z; } { E T1M, T1P, T2v, T2w; T1M = T1K + T1L; T1P = T1N + T1O; ri[WS(rs, 10)] = T1M - T1P; ri[WS(rs, 4)] = T1M + T1P; T2v = T1W + T22; T2w = T2s + T2p; ii[WS(rs, 4)] = T2v + T2w; ii[WS(rs, 10)] = T2w - T2v; } { E T1Q, T23, T2t, T2u; T1Q = T1K - T1L; T23 = T1W - T22; ri[WS(rs, 7)] = T1Q - T23; ri[WS(rs, 1)] = T1Q + T23; T2t = T2p - T2s; T2u = T1N - T1O; ii[WS(rs, 1)] = T2t - T2u; ii[WS(rs, 7)] = T2u + T2t; } { E T24, T27, T2B, T2C; T24 = T1m - T1t; T27 = T25 - T26; ri[WS(rs, 11)] = T24 - T27; ri[WS(rs, 5)] = T24 + T27; T2B = T2y - T2x; T2C = T1B - T1I; ii[WS(rs, 5)] = T2B - T2C; ii[WS(rs, 11)] = T2C + T2B; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 12}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, {72, 22, 46, 0}, 0, 0, 0 }; void X(codelet_t1_12) (planner *p) { X(kdft_dit_register) (p, t1_12, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */ /* * This function contains 118 FP additions, 60 FP multiplications, * (or, 88 additions, 30 multiplications, 30 fused multiply/add), * 47 stack variables, 2 constants, and 48 memory accesses */ #include "dft/scalar/t.h" static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { E T1, T1W, T18, T21, Tc, T15, T1V, T22, TR, T1E, T1o, T1D, T12, T1l, T1F; E T1G, Ti, T1S, T1d, T24, Tt, T1a, T1T, T25, TA, T1z, T1j, T1y, TL, T1g; E T1A, T1B; { E T6, T16, Tb, T17; T1 = ri[0]; T1W = ii[0]; { E T3, T5, T2, T4; T3 = ri[WS(rs, 4)]; T5 = ii[WS(rs, 4)]; T2 = W[6]; T4 = W[7]; T6 = FMA(T2, T3, T4 * T5); T16 = FNMS(T4, T3, T2 * T5); } { E T8, Ta, T7, T9; T8 = ri[WS(rs, 8)]; Ta = ii[WS(rs, 8)]; T7 = W[14]; T9 = W[15]; Tb = FMA(T7, T8, T9 * Ta); T17 = FNMS(T9, T8, T7 * Ta); } T18 = KP866025403 * (T16 - T17); T21 = KP866025403 * (Tb - T6); Tc = T6 + Tb; T15 = FNMS(KP500000000, Tc, T1); T1V = T16 + T17; T22 = FNMS(KP500000000, T1V, T1W); } { E T11, T1n, TW, T1m; { E TO, TQ, TN, TP; TO = ri[WS(rs, 9)]; TQ = ii[WS(rs, 9)]; TN = W[16]; TP = W[17]; TR = FMA(TN, TO, TP * TQ); T1E = FNMS(TP, TO, TN * TQ); } { E TY, T10, TX, TZ; TY = ri[WS(rs, 5)]; T10 = ii[WS(rs, 5)]; TX = W[8]; TZ = W[9]; T11 = FMA(TX, TY, TZ * T10); T1n = FNMS(TZ, TY, TX * T10); } { E TT, TV, TS, TU; TT = ri[WS(rs, 1)]; TV = ii[WS(rs, 1)]; TS = W[0]; TU = W[1]; TW = FMA(TS, TT, TU * TV); T1m = FNMS(TU, TT, TS * TV); } T1o = KP866025403 * (T1m - T1n); T1D = KP866025403 * (T11 - TW); T12 = TW + T11; T1l = FNMS(KP500000000, T12, TR); T1F = T1m + T1n; T1G = FNMS(KP500000000, T1F, T1E); } { E Ts, T1c, Tn, T1b; { E Tf, Th, Te, Tg; Tf = ri[WS(rs, 6)]; Th = ii[WS(rs, 6)]; Te = W[10]; Tg = W[11]; Ti = FMA(Te, Tf, Tg * Th); T1S = FNMS(Tg, Tf, Te * Th); } { E Tp, Tr, To, Tq; Tp = ri[WS(rs, 2)]; Tr = ii[WS(rs, 2)]; To = W[2]; Tq = W[3]; Ts = FMA(To, Tp, Tq * Tr); T1c = FNMS(Tq, Tp, To * Tr); } { E Tk, Tm, Tj, Tl; Tk = ri[WS(rs, 10)]; Tm = ii[WS(rs, 10)]; Tj = W[18]; Tl = W[19]; Tn = FMA(Tj, Tk, Tl * Tm); T1b = FNMS(Tl, Tk, Tj * Tm); } T1d = KP866025403 * (T1b - T1c); T24 = KP866025403 * (Ts - Tn); Tt = Tn + Ts; T1a = FNMS(KP500000000, Tt, Ti); T1T = T1b + T1c; T25 = FNMS(KP500000000, T1T, T1S); } { E TK, T1i, TF, T1h; { E Tx, Tz, Tw, Ty; Tx = ri[WS(rs, 3)]; Tz = ii[WS(rs, 3)]; Tw = W[4]; Ty = W[5]; TA = FMA(Tw, Tx, Ty * Tz); T1z = FNMS(Ty, Tx, Tw * Tz); } { E TH, TJ, TG, TI; TH = ri[WS(rs, 11)]; TJ = ii[WS(rs, 11)]; TG = W[20]; TI = W[21]; TK = FMA(TG, TH, TI * TJ); T1i = FNMS(TI, TH, TG * TJ); } { E TC, TE, TB, TD; TC = ri[WS(rs, 7)]; TE = ii[WS(rs, 7)]; TB = W[12]; TD = W[13]; TF = FMA(TB, TC, TD * TE); T1h = FNMS(TD, TC, TB * TE); } T1j = KP866025403 * (T1h - T1i); T1y = KP866025403 * (TK - TF); TL = TF + TK; T1g = FNMS(KP500000000, TL, TA); T1A = T1h + T1i; T1B = FNMS(KP500000000, T1A, T1z); } { E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R; { E Td, Tu, T1U, T1X; Td = T1 + Tc; Tu = Ti + Tt; Tv = Td + Tu; T1N = Td - Tu; T1U = T1S + T1T; T1X = T1V + T1W; T1Y = T1U + T1X; T20 = T1X - T1U; } { E TM, T13, T1O, T1P; TM = TA + TL; T13 = TR + T12; T14 = TM + T13; T1Z = TM - T13; T1O = T1z + T1A; T1P = T1E + T1F; T1Q = T1O - T1P; T1R = T1O + T1P; } ri[WS(rs, 6)] = Tv - T14; ii[WS(rs, 6)] = T1Y - T1R; ri[0] = Tv + T14; ii[0] = T1R + T1Y; ri[WS(rs, 3)] = T1N - T1Q; ii[WS(rs, 3)] = T1Z + T20; ri[WS(rs, 9)] = T1N + T1Q; ii[WS(rs, 9)] = T20 - T1Z; } { E T1t, T1x, T27, T2a, T1w, T28, T1I, T29; { E T1r, T1s, T23, T26; T1r = T15 + T18; T1s = T1a + T1d; T1t = T1r + T1s; T1x = T1r - T1s; T23 = T21 + T22; T26 = T24 + T25; T27 = T23 - T26; T2a = T26 + T23; } { E T1u, T1v, T1C, T1H; T1u = T1g + T1j; T1v = T1l + T1o; T1w = T1u + T1v; T28 = T1u - T1v; T1C = T1y + T1B; T1H = T1D + T1G; T1I = T1C - T1H; T29 = T1C + T1H; } ri[WS(rs, 10)] = T1t - T1w; ii[WS(rs, 10)] = T2a - T29; ri[WS(rs, 4)] = T1t + T1w; ii[WS(rs, 4)] = T29 + T2a; ri[WS(rs, 7)] = T1x - T1I; ii[WS(rs, 7)] = T28 + T27; ri[WS(rs, 1)] = T1x + T1I; ii[WS(rs, 1)] = T27 - T28; } { E T1f, T1J, T2d, T2f, T1q, T2g, T1M, T2e; { E T19, T1e, T2b, T2c; T19 = T15 - T18; T1e = T1a - T1d; T1f = T19 + T1e; T1J = T19 - T1e; T2b = T25 - T24; T2c = T22 - T21; T2d = T2b + T2c; T2f = T2c - T2b; } { E T1k, T1p, T1K, T1L; T1k = T1g - T1j; T1p = T1l - T1o; T1q = T1k + T1p; T2g = T1k - T1p; T1K = T1B - T1y; T1L = T1G - T1D; T1M = T1K - T1L; T2e = T1K + T1L; } ri[WS(rs, 2)] = T1f - T1q; ii[WS(rs, 2)] = T2d - T2e; ri[WS(rs, 8)] = T1f + T1q; ii[WS(rs, 8)] = T2e + T2d; ri[WS(rs, 11)] = T1J - T1M; ii[WS(rs, 11)] = T2g + T2f; ri[WS(rs, 5)] = T1J + T1M; ii[WS(rs, 5)] = T2f - T2g; } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 12}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, {88, 30, 30, 0}, 0, 0, 0 }; void X(codelet_t1_12) (planner *p) { X(kdft_dit_register) (p, t1_12, &desc); } #endif