/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:14 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include dft/scalar/t.h */ /* * This function contains 184 FP additions, 140 FP multiplications, * (or, 72 additions, 28 multiplications, 112 fused multiply/add), * 51 stack variables, 6 constants, and 60 memory accesses */ #include "dft/scalar/t.h" static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { E T1, T3j, T1G, T3u, Te, T1B, T3i, T3t, T1y, T2i, T2a, T2M, T37, T2V, Tz; E T2e, T1O, T2t, T39, T2X, TT, T2f, T1V, T2z, T3a, T2Y, T1e, T2h, T23, T2G; E T36, T2U; { E T7, T1D, Td, T1F; T1 = ri[0]; T3j = ii[0]; { E T3, T6, T4, T1C, T2, T5; T3 = ri[WS(rs, 5)]; T6 = ii[WS(rs, 5)]; T2 = W[8]; T4 = T2 * T3; T1C = T2 * T6; T5 = W[9]; T7 = FMA(T5, T6, T4); T1D = FNMS(T5, T3, T1C); } { E T9, Tc, Ta, T1E, T8, Tb; T9 = ri[WS(rs, 10)]; Tc = ii[WS(rs, 10)]; T8 = W[18]; Ta = T8 * T9; T1E = T8 * Tc; Tb = W[19]; Td = FMA(Tb, Tc, Ta); T1F = FNMS(Tb, T9, T1E); } T1G = T1D - T1F; T3u = Td - T7; Te = T7 + Td; T1B = FNMS(KP500000000, Te, T1); T3i = T1D + T1F; T3t = FNMS(KP500000000, T3i, T3j); } { E T1k, T2I, T1w, T28, T1q, T26; { E T1g, T1j, T1h, T2H, T1f, T1i; T1g = ri[WS(rs, 9)]; T1j = ii[WS(rs, 9)]; T1f = W[16]; T1h = T1f * T1g; T2H = T1f * T1j; T1i = W[17]; T1k = FMA(T1i, T1j, T1h); T2I = FNMS(T1i, T1g, T2H); } { E T1s, T1v, T1t, T27, T1r, T1u; T1s = ri[WS(rs, 4)]; T1v = ii[WS(rs, 4)]; T1r = W[6]; T1t = T1r * T1s; T27 = T1r * T1v; T1u = W[7]; T1w = FMA(T1u, T1v, T1t); T28 = FNMS(T1u, T1s, T27); } { E T1m, T1p, T1n, T25, T1l, T1o; T1m = ri[WS(rs, 14)]; T1p = ii[WS(rs, 14)]; T1l = W[26]; T1n = T1l * T1m; T25 = T1l * T1p; T1o = W[27]; T1q = FMA(T1o, T1p, T1n); T26 = FNMS(T1o, T1m, T25); } { E T29, T1x, T24, T2L, T2J, T2K; T29 = T26 - T28; T1x = T1q + T1w; T24 = FNMS(KP500000000, T1x, T1k); T1y = T1k + T1x; T2i = FMA(KP866025403, T29, T24); T2a = FNMS(KP866025403, T29, T24); T2L = T1w - T1q; T2J = T26 + T28; T2K = FNMS(KP500000000, T2J, T2I); T2M = FMA(KP866025403, T2L, T2K); T37 = T2I + T2J; T2V = FNMS(KP866025403, T2L, T2K); } } { E Tl, T2p, Tx, T1M, Tr, T1K; { E Th, Tk, Ti, T2o, Tg, Tj; Th = ri[WS(rs, 3)]; Tk = ii[WS(rs, 3)]; Tg = W[4]; Ti = Tg * Th; T2o = Tg * Tk; Tj = W[5]; Tl = FMA(Tj, Tk, Ti); T2p = FNMS(Tj, Th, T2o); } { E Tt, Tw, Tu, T1L, Ts, Tv; Tt = ri[WS(rs, 13)]; Tw = ii[WS(rs, 13)]; Ts = W[24]; Tu = Ts * Tt; T1L = Ts * Tw; Tv = W[25]; Tx = FMA(Tv, Tw, Tu); T1M = FNMS(Tv, Tt, T1L); } { E Tn, Tq, To, T1J, Tm, Tp; Tn = ri[WS(rs, 8)]; Tq = ii[WS(rs, 8)]; Tm = W[14]; To = Tm * Tn; T1J = Tm * Tq; Tp = W[15]; Tr = FMA(Tp, Tq, To); T1K = FNMS(Tp, Tn, T1J); } { E T1N, Ty, T1I, T2s, T2q, T2r; T1N = T1K - T1M; Ty = Tr + Tx; T1I = FNMS(KP500000000, Ty, Tl); Tz = Tl + Ty; T2e = FMA(KP866025403, T1N, T1I); T1O = FNMS(KP866025403, T1N, T1I); T2s = Tx - Tr; T2q = T1K + T1M; T2r = FNMS(KP500000000, T2q, T2p); T2t = FMA(KP866025403, T2s, T2r); T39 = T2p + T2q; T2X = FNMS(KP866025403, T2s, T2r); } } { E TF, T2v, TR, T1T, TL, T1R; { E TB, TE, TC, T2u, TA, TD; TB = ri[WS(rs, 12)]; TE = ii[WS(rs, 12)]; TA = W[22]; TC = TA * TB; T2u = TA * TE; TD = W[23]; TF = FMA(TD, TE, TC); T2v = FNMS(TD, TB, T2u); } { E TN, TQ, TO, T1S, TM, TP; TN = ri[WS(rs, 7)]; TQ = ii[WS(rs, 7)]; TM = W[12]; TO = TM * TN; T1S = TM * TQ; TP = W[13]; TR = FMA(TP, TQ, TO); T1T = FNMS(TP, TN, T1S); } { E TH, TK, TI, T1Q, TG, TJ; TH = ri[WS(rs, 2)]; TK = ii[WS(rs, 2)]; TG = W[2]; TI = TG * TH; T1Q = TG * TK; TJ = W[3]; TL = FMA(TJ, TK, TI); T1R = FNMS(TJ, TH, T1Q); } { E T1U, TS, T1P, T2y, T2w, T2x; T1U = T1R - T1T; TS = TL + TR; T1P = FNMS(KP500000000, TS, TF); TT = TF + TS; T2f = FMA(KP866025403, T1U, T1P); T1V = FNMS(KP866025403, T1U, T1P); T2y = TR - TL; T2w = T1R + T1T; T2x = FNMS(KP500000000, T2w, T2v); T2z = FMA(KP866025403, T2y, T2x); T3a = T2v + T2w; T2Y = FNMS(KP866025403, T2y, T2x); } } { E T10, T2C, T1c, T21, T16, T1Z; { E TW, TZ, TX, T2B, TV, TY; TW = ri[WS(rs, 6)]; TZ = ii[WS(rs, 6)]; TV = W[10]; TX = TV * TW; T2B = TV * TZ; TY = W[11]; T10 = FMA(TY, TZ, TX); T2C = FNMS(TY, TW, T2B); } { E T18, T1b, T19, T20, T17, T1a; T18 = ri[WS(rs, 1)]; T1b = ii[WS(rs, 1)]; T17 = W[0]; T19 = T17 * T18; T20 = T17 * T1b; T1a = W[1]; T1c = FMA(T1a, T1b, T19); T21 = FNMS(T1a, T18, T20); } { E T12, T15, T13, T1Y, T11, T14; T12 = ri[WS(rs, 11)]; T15 = ii[WS(rs, 11)]; T11 = W[20]; T13 = T11 * T12; T1Y = T11 * T15; T14 = W[21]; T16 = FMA(T14, T15, T13); T1Z = FNMS(T14, T12, T1Y); } { E T22, T1d, T1X, T2F, T2D, T2E; T22 = T1Z - T21; T1d = T16 + T1c; T1X = FNMS(KP500000000, T1d, T10); T1e = T10 + T1d; T2h = FMA(KP866025403, T22, T1X); T23 = FNMS(KP866025403, T22, T1X); T2F = T1c - T16; T2D = T1Z + T21; T2E = FNMS(KP500000000, T2D, T2C); T2G = FMA(KP866025403, T2F, T2E); T36 = T2C + T2D; T2U = FNMS(KP866025403, T2F, T2E); } } { E T3c, T3e, Tf, T1A, T33, T34, T3d, T35; { E T38, T3b, TU, T1z; T38 = T36 - T37; T3b = T39 - T3a; T3c = FNMS(KP618033988, T3b, T38); T3e = FMA(KP618033988, T38, T3b); Tf = T1 + Te; TU = Tz + TT; T1z = T1e + T1y; T1A = TU + T1z; T33 = FNMS(KP250000000, T1A, Tf); T34 = TU - T1z; } ri[0] = Tf + T1A; T3d = FMA(KP559016994, T34, T33); ri[WS(rs, 9)] = FNMS(KP951056516, T3e, T3d); ri[WS(rs, 6)] = FMA(KP951056516, T3e, T3d); T35 = FNMS(KP559016994, T34, T33); ri[WS(rs, 12)] = FNMS(KP951056516, T3c, T35); ri[WS(rs, 3)] = FMA(KP951056516, T3c, T35); } { E T3q, T3s, T3k, T3h, T3l, T3m, T3r, T3n; { E T3o, T3p, T3f, T3g; T3o = T1e - T1y; T3p = Tz - TT; T3q = FNMS(KP618033988, T3p, T3o); T3s = FMA(KP618033988, T3o, T3p); T3k = T3i + T3j; T3f = T39 + T3a; T3g = T36 + T37; T3h = T3f + T3g; T3l = FNMS(KP250000000, T3h, T3k); T3m = T3f - T3g; } ii[0] = T3h + T3k; T3r = FMA(KP559016994, T3m, T3l); ii[WS(rs, 6)] = FNMS(KP951056516, T3s, T3r); ii[WS(rs, 9)] = FMA(KP951056516, T3s, T3r); T3n = FNMS(KP559016994, T3m, T3l); ii[WS(rs, 3)] = FNMS(KP951056516, T3q, T3n); ii[WS(rs, 12)] = FMA(KP951056516, T3q, T3n); } { E T30, T32, T1H, T2c, T2R, T2S, T31, T2T; { E T2W, T2Z, T1W, T2b; T2W = T2U - T2V; T2Z = T2X - T2Y; T30 = FNMS(KP618033988, T2Z, T2W); T32 = FMA(KP618033988, T2W, T2Z); T1H = FNMS(KP866025403, T1G, T1B); T1W = T1O + T1V; T2b = T23 + T2a; T2c = T1W + T2b; T2R = FNMS(KP250000000, T2c, T1H); T2S = T1W - T2b; } ri[WS(rs, 5)] = T1H + T2c; T31 = FMA(KP559016994, T2S, T2R); ri[WS(rs, 14)] = FNMS(KP951056516, T32, T31); ri[WS(rs, 11)] = FMA(KP951056516, T32, T31); T2T = FNMS(KP559016994, T2S, T2R); ri[WS(rs, 2)] = FNMS(KP951056516, T30, T2T); ri[WS(rs, 8)] = FMA(KP951056516, T30, T2T); } { E T3Q, T3S, T3H, T3K, T3L, T3M, T3R, T3N; { E T3O, T3P, T3I, T3J; T3O = T23 - T2a; T3P = T1O - T1V; T3Q = FNMS(KP618033988, T3P, T3O); T3S = FMA(KP618033988, T3O, T3P); T3H = FNMS(KP866025403, T3u, T3t); T3I = T2X + T2Y; T3J = T2U + T2V; T3K = T3I + T3J; T3L = FNMS(KP250000000, T3K, T3H); T3M = T3I - T3J; } ii[WS(rs, 5)] = T3K + T3H; T3R = FMA(KP559016994, T3M, T3L); ii[WS(rs, 11)] = FNMS(KP951056516, T3S, T3R); ii[WS(rs, 14)] = FMA(KP951056516, T3S, T3R); T3N = FNMS(KP559016994, T3M, T3L); ii[WS(rs, 2)] = FMA(KP951056516, T3Q, T3N); ii[WS(rs, 8)] = FNMS(KP951056516, T3Q, T3N); } { E T3E, T3G, T3v, T3y, T3z, T3A, T3F, T3B; { E T3C, T3D, T3w, T3x; T3C = T2e - T2f; T3D = T2h - T2i; T3E = FMA(KP618033988, T3D, T3C); T3G = FNMS(KP618033988, T3C, T3D); T3v = FMA(KP866025403, T3u, T3t); T3w = T2t + T2z; T3x = T2G + T2M; T3y = T3w + T3x; T3z = FNMS(KP250000000, T3y, T3v); T3A = T3w - T3x; } ii[WS(rs, 10)] = T3y + T3v; T3F = FNMS(KP559016994, T3A, T3z); ii[WS(rs, 7)] = FMA(KP951056516, T3G, T3F); ii[WS(rs, 13)] = FNMS(KP951056516, T3G, T3F); T3B = FMA(KP559016994, T3A, T3z); ii[WS(rs, 1)] = FNMS(KP951056516, T3E, T3B); ii[WS(rs, 4)] = FMA(KP951056516, T3E, T3B); } { E T2O, T2Q, T2d, T2k, T2l, T2m, T2P, T2n; { E T2A, T2N, T2g, T2j; T2A = T2t - T2z; T2N = T2G - T2M; T2O = FMA(KP618033988, T2N, T2A); T2Q = FNMS(KP618033988, T2A, T2N); T2d = FMA(KP866025403, T1G, T1B); T2g = T2e + T2f; T2j = T2h + T2i; T2k = T2g + T2j; T2l = FNMS(KP250000000, T2k, T2d); T2m = T2g - T2j; } ri[WS(rs, 10)] = T2d + T2k; T2P = FNMS(KP559016994, T2m, T2l); ri[WS(rs, 7)] = FNMS(KP951056516, T2Q, T2P); ri[WS(rs, 13)] = FMA(KP951056516, T2Q, T2P); T2n = FMA(KP559016994, T2m, T2l); ri[WS(rs, 4)] = FNMS(KP951056516, T2O, T2n); ri[WS(rs, 1)] = FMA(KP951056516, T2O, T2n); } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 15}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {72, 28, 112, 0}, 0, 0, 0 }; void X(codelet_t1_15) (planner *p) { X(kdft_dit_register) (p, t1_15, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include dft/scalar/t.h */ /* * This function contains 184 FP additions, 112 FP multiplications, * (or, 128 additions, 56 multiplications, 56 fused multiply/add), * 65 stack variables, 6 constants, and 60 memory accesses */ #include "dft/scalar/t.h" static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { E T1q, T34, Td, T1n, T2S, T35, T13, T1k, T1l, T2E, T2F, T2O, T1H, T1T, T2k; E T2t, T2f, T2s, T1M, T1U, Tu, TL, TM, T2H, T2I, T2N, T1w, T1Q, T29, T2w; E T24, T2v, T1B, T1R; { E T1, T2R, T6, T1o, Tb, T1p, Tc, T2Q; T1 = ri[0]; T2R = ii[0]; { E T3, T5, T2, T4; T3 = ri[WS(rs, 5)]; T5 = ii[WS(rs, 5)]; T2 = W[8]; T4 = W[9]; T6 = FMA(T2, T3, T4 * T5); T1o = FNMS(T4, T3, T2 * T5); } { E T8, Ta, T7, T9; T8 = ri[WS(rs, 10)]; Ta = ii[WS(rs, 10)]; T7 = W[18]; T9 = W[19]; Tb = FMA(T7, T8, T9 * Ta); T1p = FNMS(T9, T8, T7 * Ta); } T1q = KP866025403 * (T1o - T1p); T34 = KP866025403 * (Tb - T6); Tc = T6 + Tb; Td = T1 + Tc; T1n = FNMS(KP500000000, Tc, T1); T2Q = T1o + T1p; T2S = T2Q + T2R; T35 = FNMS(KP500000000, T2Q, T2R); } { E TR, T2c, T18, T2h, TW, T1E, T11, T1F, T12, T2d, T1d, T1J, T1i, T1K, T1j; E T2i; { E TO, TQ, TN, TP; TO = ri[WS(rs, 6)]; TQ = ii[WS(rs, 6)]; TN = W[10]; TP = W[11]; TR = FMA(TN, TO, TP * TQ); T2c = FNMS(TP, TO, TN * TQ); } { E T15, T17, T14, T16; T15 = ri[WS(rs, 9)]; T17 = ii[WS(rs, 9)]; T14 = W[16]; T16 = W[17]; T18 = FMA(T14, T15, T16 * T17); T2h = FNMS(T16, T15, T14 * T17); } { E TT, TV, TS, TU; TT = ri[WS(rs, 11)]; TV = ii[WS(rs, 11)]; TS = W[20]; TU = W[21]; TW = FMA(TS, TT, TU * TV); T1E = FNMS(TU, TT, TS * TV); } { E TY, T10, TX, TZ; TY = ri[WS(rs, 1)]; T10 = ii[WS(rs, 1)]; TX = W[0]; TZ = W[1]; T11 = FMA(TX, TY, TZ * T10); T1F = FNMS(TZ, TY, TX * T10); } T12 = TW + T11; T2d = T1E + T1F; { E T1a, T1c, T19, T1b; T1a = ri[WS(rs, 14)]; T1c = ii[WS(rs, 14)]; T19 = W[26]; T1b = W[27]; T1d = FMA(T19, T1a, T1b * T1c); T1J = FNMS(T1b, T1a, T19 * T1c); } { E T1f, T1h, T1e, T1g; T1f = ri[WS(rs, 4)]; T1h = ii[WS(rs, 4)]; T1e = W[6]; T1g = W[7]; T1i = FMA(T1e, T1f, T1g * T1h); T1K = FNMS(T1g, T1f, T1e * T1h); } T1j = T1d + T1i; T2i = T1J + T1K; { E T1D, T1G, T2g, T2j; T13 = TR + T12; T1k = T18 + T1j; T1l = T13 + T1k; T2E = T2c + T2d; T2F = T2h + T2i; T2O = T2E + T2F; T1D = FNMS(KP500000000, T12, TR); T1G = KP866025403 * (T1E - T1F); T1H = T1D - T1G; T1T = T1D + T1G; T2g = KP866025403 * (T1i - T1d); T2j = FNMS(KP500000000, T2i, T2h); T2k = T2g + T2j; T2t = T2j - T2g; { E T2b, T2e, T1I, T1L; T2b = KP866025403 * (T11 - TW); T2e = FNMS(KP500000000, T2d, T2c); T2f = T2b + T2e; T2s = T2e - T2b; T1I = FNMS(KP500000000, T1j, T18); T1L = KP866025403 * (T1J - T1K); T1M = T1I - T1L; T1U = T1I + T1L; } } } { E Ti, T21, Tz, T26, Tn, T1t, Ts, T1u, Tt, T22, TE, T1y, TJ, T1z, TK; E T27; { E Tf, Th, Te, Tg; Tf = ri[WS(rs, 3)]; Th = ii[WS(rs, 3)]; Te = W[4]; Tg = W[5]; Ti = FMA(Te, Tf, Tg * Th); T21 = FNMS(Tg, Tf, Te * Th); } { E Tw, Ty, Tv, Tx; Tw = ri[WS(rs, 12)]; Ty = ii[WS(rs, 12)]; Tv = W[22]; Tx = W[23]; Tz = FMA(Tv, Tw, Tx * Ty); T26 = FNMS(Tx, Tw, Tv * Ty); } { E Tk, Tm, Tj, Tl; Tk = ri[WS(rs, 8)]; Tm = ii[WS(rs, 8)]; Tj = W[14]; Tl = W[15]; Tn = FMA(Tj, Tk, Tl * Tm); T1t = FNMS(Tl, Tk, Tj * Tm); } { E Tp, Tr, To, Tq; Tp = ri[WS(rs, 13)]; Tr = ii[WS(rs, 13)]; To = W[24]; Tq = W[25]; Ts = FMA(To, Tp, Tq * Tr); T1u = FNMS(Tq, Tp, To * Tr); } Tt = Tn + Ts; T22 = T1t + T1u; { E TB, TD, TA, TC; TB = ri[WS(rs, 2)]; TD = ii[WS(rs, 2)]; TA = W[2]; TC = W[3]; TE = FMA(TA, TB, TC * TD); T1y = FNMS(TC, TB, TA * TD); } { E TG, TI, TF, TH; TG = ri[WS(rs, 7)]; TI = ii[WS(rs, 7)]; TF = W[12]; TH = W[13]; TJ = FMA(TF, TG, TH * TI); T1z = FNMS(TH, TG, TF * TI); } TK = TE + TJ; T27 = T1y + T1z; { E T1s, T1v, T25, T28; Tu = Ti + Tt; TL = Tz + TK; TM = Tu + TL; T2H = T21 + T22; T2I = T26 + T27; T2N = T2H + T2I; T1s = FNMS(KP500000000, Tt, Ti); T1v = KP866025403 * (T1t - T1u); T1w = T1s - T1v; T1Q = T1s + T1v; T25 = KP866025403 * (TJ - TE); T28 = FNMS(KP500000000, T27, T26); T29 = T25 + T28; T2w = T28 - T25; { E T20, T23, T1x, T1A; T20 = KP866025403 * (Ts - Tn); T23 = FNMS(KP500000000, T22, T21); T24 = T20 + T23; T2v = T23 - T20; T1x = FNMS(KP500000000, TK, Tz); T1A = KP866025403 * (T1y - T1z); T1B = T1x - T1A; T1R = T1x + T1A; } } } { E T2C, T1m, T2B, T2K, T2M, T2G, T2J, T2L, T2D; T2C = KP559016994 * (TM - T1l); T1m = TM + T1l; T2B = FNMS(KP250000000, T1m, Td); T2G = T2E - T2F; T2J = T2H - T2I; T2K = FNMS(KP587785252, T2J, KP951056516 * T2G); T2M = FMA(KP951056516, T2J, KP587785252 * T2G); ri[0] = Td + T1m; T2L = T2C + T2B; ri[WS(rs, 9)] = T2L - T2M; ri[WS(rs, 6)] = T2L + T2M; T2D = T2B - T2C; ri[WS(rs, 12)] = T2D - T2K; ri[WS(rs, 3)] = T2D + T2K; } { E T2U, T2P, T2T, T2Y, T30, T2W, T2X, T2Z, T2V; T2U = KP559016994 * (T2N - T2O); T2P = T2N + T2O; T2T = FNMS(KP250000000, T2P, T2S); T2W = T13 - T1k; T2X = Tu - TL; T2Y = FNMS(KP587785252, T2X, KP951056516 * T2W); T30 = FMA(KP951056516, T2X, KP587785252 * T2W); ii[0] = T2P + T2S; T2Z = T2U + T2T; ii[WS(rs, 6)] = T2Z - T30; ii[WS(rs, 9)] = T30 + T2Z; T2V = T2T - T2U; ii[WS(rs, 3)] = T2V - T2Y; ii[WS(rs, 12)] = T2Y + T2V; } { E T2y, T2A, T1r, T1O, T2p, T2q, T2z, T2r; { E T2u, T2x, T1C, T1N; T2u = T2s - T2t; T2x = T2v - T2w; T2y = FNMS(KP587785252, T2x, KP951056516 * T2u); T2A = FMA(KP951056516, T2x, KP587785252 * T2u); T1r = T1n - T1q; T1C = T1w + T1B; T1N = T1H + T1M; T1O = T1C + T1N; T2p = FNMS(KP250000000, T1O, T1r); T2q = KP559016994 * (T1C - T1N); } ri[WS(rs, 5)] = T1r + T1O; T2z = T2q + T2p; ri[WS(rs, 14)] = T2z - T2A; ri[WS(rs, 11)] = T2z + T2A; T2r = T2p - T2q; ri[WS(rs, 2)] = T2r - T2y; ri[WS(rs, 8)] = T2r + T2y; } { E T3h, T3q, T3i, T3l, T3m, T3n, T3p, T3o; { E T3f, T3g, T3j, T3k; T3f = T1H - T1M; T3g = T1w - T1B; T3h = FNMS(KP587785252, T3g, KP951056516 * T3f); T3q = FMA(KP951056516, T3g, KP587785252 * T3f); T3i = T35 - T34; T3j = T2v + T2w; T3k = T2s + T2t; T3l = T3j + T3k; T3m = FNMS(KP250000000, T3l, T3i); T3n = KP559016994 * (T3j - T3k); } ii[WS(rs, 5)] = T3l + T3i; T3p = T3n + T3m; ii[WS(rs, 11)] = T3p - T3q; ii[WS(rs, 14)] = T3q + T3p; T3o = T3m - T3n; ii[WS(rs, 2)] = T3h + T3o; ii[WS(rs, 8)] = T3o - T3h; } { E T3c, T3d, T36, T37, T33, T38, T3e, T39; { E T3a, T3b, T31, T32; T3a = T1Q - T1R; T3b = T1T - T1U; T3c = FMA(KP951056516, T3a, KP587785252 * T3b); T3d = FNMS(KP587785252, T3a, KP951056516 * T3b); T36 = T34 + T35; T31 = T24 + T29; T32 = T2f + T2k; T37 = T31 + T32; T33 = KP559016994 * (T31 - T32); T38 = FNMS(KP250000000, T37, T36); } ii[WS(rs, 10)] = T37 + T36; T3e = T38 - T33; ii[WS(rs, 7)] = T3d + T3e; ii[WS(rs, 13)] = T3e - T3d; T39 = T33 + T38; ii[WS(rs, 1)] = T39 - T3c; ii[WS(rs, 4)] = T3c + T39; } { E T2m, T2o, T1P, T1W, T1X, T1Y, T2n, T1Z; { E T2a, T2l, T1S, T1V; T2a = T24 - T29; T2l = T2f - T2k; T2m = FMA(KP951056516, T2a, KP587785252 * T2l); T2o = FNMS(KP587785252, T2a, KP951056516 * T2l); T1P = T1n + T1q; T1S = T1Q + T1R; T1V = T1T + T1U; T1W = T1S + T1V; T1X = KP559016994 * (T1S - T1V); T1Y = FNMS(KP250000000, T1W, T1P); } ri[WS(rs, 10)] = T1P + T1W; T2n = T1Y - T1X; ri[WS(rs, 7)] = T2n - T2o; ri[WS(rs, 13)] = T2n + T2o; T1Z = T1X + T1Y; ri[WS(rs, 4)] = T1Z - T2m; ri[WS(rs, 1)] = T1Z + T2m; } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 15}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {128, 56, 56, 0}, 0, 0, 0 }; void X(codelet_t1_15) (planner *p) { X(kdft_dit_register) (p, t1_15, &desc); } #endif