/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:15 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */ /* * This function contains 174 FP additions, 100 FP multiplications, * (or, 104 additions, 30 multiplications, 70 fused multiply/add), * 60 stack variables, 3 constants, and 64 memory accesses */ #include "dft/scalar/t.h" static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { E T8, T3z, T1I, T3o, T1s, T35, T2o, T2r, T1F, T36, T2p, T2w, Tl, T3A, T1N; E T3k, Tz, T2V, T1T, T1U, T11, T30, T29, T2c, T1e, T31, T2a, T2h, TM, T2W; E T1W, T21; { E T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5; T1 = ri[0]; T3n = ii[0]; T3 = ri[WS(rs, 8)]; T6 = ii[WS(rs, 8)]; T2 = W[14]; T4 = T2 * T3; T3l = T2 * T6; T5 = W[15]; T7 = FMA(T5, T6, T4); T3m = FNMS(T5, T3, T3l); T8 = T1 + T7; T3z = T3n - T3m; T1I = T1 - T7; T3o = T3m + T3n; } { E T1h, T1k, T1i, T2k, T1n, T1q, T1o, T2m, T1g, T1m; T1h = ri[WS(rs, 15)]; T1k = ii[WS(rs, 15)]; T1g = W[28]; T1i = T1g * T1h; T2k = T1g * T1k; T1n = ri[WS(rs, 7)]; T1q = ii[WS(rs, 7)]; T1m = W[12]; T1o = T1m * T1n; T2m = T1m * T1q; { E T1l, T2l, T1r, T2n, T1j, T1p; T1j = W[29]; T1l = FMA(T1j, T1k, T1i); T2l = FNMS(T1j, T1h, T2k); T1p = W[13]; T1r = FMA(T1p, T1q, T1o); T2n = FNMS(T1p, T1n, T2m); T1s = T1l + T1r; T35 = T2l + T2n; T2o = T2l - T2n; T2r = T1l - T1r; } } { E T1u, T1x, T1v, T2s, T1A, T1D, T1B, T2u, T1t, T1z; T1u = ri[WS(rs, 3)]; T1x = ii[WS(rs, 3)]; T1t = W[4]; T1v = T1t * T1u; T2s = T1t * T1x; T1A = ri[WS(rs, 11)]; T1D = ii[WS(rs, 11)]; T1z = W[20]; T1B = T1z * T1A; T2u = T1z * T1D; { E T1y, T2t, T1E, T2v, T1w, T1C; T1w = W[5]; T1y = FMA(T1w, T1x, T1v); T2t = FNMS(T1w, T1u, T2s); T1C = W[21]; T1E = FMA(T1C, T1D, T1B); T2v = FNMS(T1C, T1A, T2u); T1F = T1y + T1E; T36 = T2t + T2v; T2p = T1y - T1E; T2w = T2t - T2v; } } { E Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf; Ta = ri[WS(rs, 4)]; Td = ii[WS(rs, 4)]; T9 = W[6]; Tb = T9 * Ta; T1J = T9 * Td; Tg = ri[WS(rs, 12)]; Tj = ii[WS(rs, 12)]; Tf = W[22]; Th = Tf * Tg; T1L = Tf * Tj; { E Te, T1K, Tk, T1M, Tc, Ti; Tc = W[7]; Te = FMA(Tc, Td, Tb); T1K = FNMS(Tc, Ta, T1J); Ti = W[23]; Tk = FMA(Ti, Tj, Th); T1M = FNMS(Ti, Tg, T1L); Tl = Te + Tk; T3A = Te - Tk; T1N = T1K - T1M; T3k = T1K + T1M; } } { E To, Tr, Tp, T1P, Tu, Tx, Tv, T1R, Tn, Tt; To = ri[WS(rs, 2)]; Tr = ii[WS(rs, 2)]; Tn = W[2]; Tp = Tn * To; T1P = Tn * Tr; Tu = ri[WS(rs, 10)]; Tx = ii[WS(rs, 10)]; Tt = W[18]; Tv = Tt * Tu; T1R = Tt * Tx; { E Ts, T1Q, Ty, T1S, Tq, Tw; Tq = W[3]; Ts = FMA(Tq, Tr, Tp); T1Q = FNMS(Tq, To, T1P); Tw = W[19]; Ty = FMA(Tw, Tx, Tv); T1S = FNMS(Tw, Tu, T1R); Tz = Ts + Ty; T2V = T1Q + T1S; T1T = T1Q - T1S; T1U = Ts - Ty; } } { E TQ, TT, TR, T25, TW, TZ, TX, T27, TP, TV; TQ = ri[WS(rs, 1)]; TT = ii[WS(rs, 1)]; TP = W[0]; TR = TP * TQ; T25 = TP * TT; TW = ri[WS(rs, 9)]; TZ = ii[WS(rs, 9)]; TV = W[16]; TX = TV * TW; T27 = TV * TZ; { E TU, T26, T10, T28, TS, TY; TS = W[1]; TU = FMA(TS, TT, TR); T26 = FNMS(TS, TQ, T25); TY = W[17]; T10 = FMA(TY, TZ, TX); T28 = FNMS(TY, TW, T27); T11 = TU + T10; T30 = T26 + T28; T29 = T26 - T28; T2c = TU - T10; } } { E T13, T16, T14, T2d, T19, T1c, T1a, T2f, T12, T18; T13 = ri[WS(rs, 5)]; T16 = ii[WS(rs, 5)]; T12 = W[8]; T14 = T12 * T13; T2d = T12 * T16; T19 = ri[WS(rs, 13)]; T1c = ii[WS(rs, 13)]; T18 = W[24]; T1a = T18 * T19; T2f = T18 * T1c; { E T17, T2e, T1d, T2g, T15, T1b; T15 = W[9]; T17 = FMA(T15, T16, T14); T2e = FNMS(T15, T13, T2d); T1b = W[25]; T1d = FMA(T1b, T1c, T1a); T2g = FNMS(T1b, T19, T2f); T1e = T17 + T1d; T31 = T2e + T2g; T2a = T17 - T1d; T2h = T2e - T2g; } } { E TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG; TB = ri[WS(rs, 14)]; TE = ii[WS(rs, 14)]; TA = W[26]; TC = TA * TB; T1X = TA * TE; TH = ri[WS(rs, 6)]; TK = ii[WS(rs, 6)]; TG = W[10]; TI = TG * TH; T1Z = TG * TK; { E TF, T1Y, TL, T20, TD, TJ; TD = W[27]; TF = FMA(TD, TE, TC); T1Y = FNMS(TD, TB, T1X); TJ = W[11]; TL = FMA(TJ, TK, TI); T20 = FNMS(TJ, TH, T1Z); TM = TF + TL; T2W = T1Y + T20; T1W = TF - TL; T21 = T1Y - T20; } } { E TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i; { E Tm, TN, T3j, T3p; Tm = T8 + Tl; TN = Tz + TM; TO = Tm + TN; T3e = Tm - TN; T3j = T2V + T2W; T3p = T3k + T3o; T3q = T3j + T3p; T3s = T3p - T3j; } { E T1f, T1G, T3f, T3g; T1f = T11 + T1e; T1G = T1s + T1F; T1H = T1f + T1G; T3r = T1G - T1f; T3f = T30 + T31; T3g = T35 + T36; T3h = T3f - T3g; T3i = T3f + T3g; } ri[WS(rs, 8)] = TO - T1H; ii[WS(rs, 8)] = T3q - T3i; ri[0] = TO + T1H; ii[0] = T3i + T3q; ri[WS(rs, 12)] = T3e - T3h; ii[WS(rs, 12)] = T3s - T3r; ri[WS(rs, 4)] = T3e + T3h; ii[WS(rs, 4)] = T3r + T3s; } { E T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c; { E T2U, T2X, T3t, T3u; T2U = T8 - Tl; T2X = T2V - T2W; T2Y = T2U + T2X; T3a = T2U - T2X; T3t = TM - Tz; T3u = T3o - T3k; T3v = T3t + T3u; T3x = T3u - T3t; } { E T2Z, T32, T34, T37; T2Z = T11 - T1e; T32 = T30 - T31; T33 = T2Z + T32; T3b = T32 - T2Z; T34 = T1s - T1F; T37 = T35 - T36; T38 = T34 - T37; T3c = T34 + T37; } { E T39, T3w, T3d, T3y; T39 = T33 + T38; ri[WS(rs, 10)] = FNMS(KP707106781, T39, T2Y); ri[WS(rs, 2)] = FMA(KP707106781, T39, T2Y); T3w = T3b + T3c; ii[WS(rs, 2)] = FMA(KP707106781, T3w, T3v); ii[WS(rs, 10)] = FNMS(KP707106781, T3w, T3v); T3d = T3b - T3c; ri[WS(rs, 14)] = FNMS(KP707106781, T3d, T3a); ri[WS(rs, 6)] = FMA(KP707106781, T3d, T3a); T3y = T38 - T33; ii[WS(rs, 6)] = FMA(KP707106781, T3y, T3x); ii[WS(rs, 14)] = FNMS(KP707106781, T3y, T3x); } } { E T1O, T3B, T3H, T2E, T23, T3C, T2O, T2S, T2H, T3I, T2j, T2B, T2L, T2R, T2y; E T2C; { E T1V, T22, T2b, T2i; T1O = T1I - T1N; T3B = T3z - T3A; T3H = T3A + T3z; T2E = T1I + T1N; T1V = T1T - T1U; T22 = T1W + T21; T23 = T1V - T22; T3C = T1V + T22; { E T2M, T2N, T2F, T2G; T2M = T2r + T2w; T2N = T2o - T2p; T2O = FNMS(KP414213562, T2N, T2M); T2S = FMA(KP414213562, T2M, T2N); T2F = T1U + T1T; T2G = T1W - T21; T2H = T2F + T2G; T3I = T2G - T2F; } T2b = T29 + T2a; T2i = T2c - T2h; T2j = FMA(KP414213562, T2i, T2b); T2B = FNMS(KP414213562, T2b, T2i); { E T2J, T2K, T2q, T2x; T2J = T2c + T2h; T2K = T29 - T2a; T2L = FMA(KP414213562, T2K, T2J); T2R = FNMS(KP414213562, T2J, T2K); T2q = T2o + T2p; T2x = T2r - T2w; T2y = FNMS(KP414213562, T2x, T2q); T2C = FMA(KP414213562, T2q, T2x); } } { E T24, T2z, T3J, T3K; T24 = FMA(KP707106781, T23, T1O); T2z = T2j - T2y; ri[WS(rs, 11)] = FNMS(KP923879532, T2z, T24); ri[WS(rs, 3)] = FMA(KP923879532, T2z, T24); T3J = FMA(KP707106781, T3I, T3H); T3K = T2C - T2B; ii[WS(rs, 3)] = FMA(KP923879532, T3K, T3J); ii[WS(rs, 11)] = FNMS(KP923879532, T3K, T3J); } { E T2A, T2D, T3L, T3M; T2A = FNMS(KP707106781, T23, T1O); T2D = T2B + T2C; ri[WS(rs, 7)] = FNMS(KP923879532, T2D, T2A); ri[WS(rs, 15)] = FMA(KP923879532, T2D, T2A); T3L = FNMS(KP707106781, T3I, T3H); T3M = T2j + T2y; ii[WS(rs, 7)] = FNMS(KP923879532, T3M, T3L); ii[WS(rs, 15)] = FMA(KP923879532, T3M, T3L); } { E T2I, T2P, T3D, T3E; T2I = FMA(KP707106781, T2H, T2E); T2P = T2L + T2O; ri[WS(rs, 9)] = FNMS(KP923879532, T2P, T2I); ri[WS(rs, 1)] = FMA(KP923879532, T2P, T2I); T3D = FMA(KP707106781, T3C, T3B); T3E = T2R + T2S; ii[WS(rs, 1)] = FMA(KP923879532, T3E, T3D); ii[WS(rs, 9)] = FNMS(KP923879532, T3E, T3D); } { E T2Q, T2T, T3F, T3G; T2Q = FNMS(KP707106781, T2H, T2E); T2T = T2R - T2S; ri[WS(rs, 13)] = FNMS(KP923879532, T2T, T2Q); ri[WS(rs, 5)] = FMA(KP923879532, T2T, T2Q); T3F = FNMS(KP707106781, T3C, T3B); T3G = T2O - T2L; ii[WS(rs, 5)] = FMA(KP923879532, T3G, T3F); ii[WS(rs, 13)] = FNMS(KP923879532, T3G, T3F); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 16}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, {104, 30, 70, 0}, 0, 0, 0 }; void X(codelet_t1_16) (planner *p) { X(kdft_dit_register) (p, t1_16, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */ /* * This function contains 174 FP additions, 84 FP multiplications, * (or, 136 additions, 46 multiplications, 38 fused multiply/add), * 52 stack variables, 3 constants, and 64 memory accesses */ #include "dft/scalar/t.h" static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { E T7, T37, T1t, T2U, Ti, T38, T1w, T2R, Tu, T2s, T1C, T2c, TF, T2t, T1H; E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2j, T24, T2k, TS, T13, T2w, T2x; E T2y, T2z, T1O, T2g, T1T, T2h; { E T1, T2T, T6, T2S; T1 = ri[0]; T2T = ii[0]; { E T3, T5, T2, T4; T3 = ri[WS(rs, 8)]; T5 = ii[WS(rs, 8)]; T2 = W[14]; T4 = W[15]; T6 = FMA(T2, T3, T4 * T5); T2S = FNMS(T4, T3, T2 * T5); } T7 = T1 + T6; T37 = T2T - T2S; T1t = T1 - T6; T2U = T2S + T2T; } { E Tc, T1u, Th, T1v; { E T9, Tb, T8, Ta; T9 = ri[WS(rs, 4)]; Tb = ii[WS(rs, 4)]; T8 = W[6]; Ta = W[7]; Tc = FMA(T8, T9, Ta * Tb); T1u = FNMS(Ta, T9, T8 * Tb); } { E Te, Tg, Td, Tf; Te = ri[WS(rs, 12)]; Tg = ii[WS(rs, 12)]; Td = W[22]; Tf = W[23]; Th = FMA(Td, Te, Tf * Tg); T1v = FNMS(Tf, Te, Td * Tg); } Ti = Tc + Th; T38 = Tc - Th; T1w = T1u - T1v; T2R = T1u + T1v; } { E To, T1y, Tt, T1z, T1A, T1B; { E Tl, Tn, Tk, Tm; Tl = ri[WS(rs, 2)]; Tn = ii[WS(rs, 2)]; Tk = W[2]; Tm = W[3]; To = FMA(Tk, Tl, Tm * Tn); T1y = FNMS(Tm, Tl, Tk * Tn); } { E Tq, Ts, Tp, Tr; Tq = ri[WS(rs, 10)]; Ts = ii[WS(rs, 10)]; Tp = W[18]; Tr = W[19]; Tt = FMA(Tp, Tq, Tr * Ts); T1z = FNMS(Tr, Tq, Tp * Ts); } Tu = To + Tt; T2s = T1y + T1z; T1A = T1y - T1z; T1B = To - Tt; T1C = T1A - T1B; T2c = T1B + T1A; } { E Tz, T1E, TE, T1F, T1D, T1G; { E Tw, Ty, Tv, Tx; Tw = ri[WS(rs, 14)]; Ty = ii[WS(rs, 14)]; Tv = W[26]; Tx = W[27]; Tz = FMA(Tv, Tw, Tx * Ty); T1E = FNMS(Tx, Tw, Tv * Ty); } { E TB, TD, TA, TC; TB = ri[WS(rs, 6)]; TD = ii[WS(rs, 6)]; TA = W[10]; TC = W[11]; TE = FMA(TA, TB, TC * TD); T1F = FNMS(TC, TB, TA * TD); } TF = Tz + TE; T2t = T1E + T1F; T1D = Tz - TE; T1G = T1E - T1F; T1H = T1D + T1G; T2d = T1D - T1G; } { E T19, T20, T1p, T1X, T1e, T21, T1k, T1W; { E T16, T18, T15, T17; T16 = ri[WS(rs, 15)]; T18 = ii[WS(rs, 15)]; T15 = W[28]; T17 = W[29]; T19 = FMA(T15, T16, T17 * T18); T20 = FNMS(T17, T16, T15 * T18); } { E T1m, T1o, T1l, T1n; T1m = ri[WS(rs, 11)]; T1o = ii[WS(rs, 11)]; T1l = W[20]; T1n = W[21]; T1p = FMA(T1l, T1m, T1n * T1o); T1X = FNMS(T1n, T1m, T1l * T1o); } { E T1b, T1d, T1a, T1c; T1b = ri[WS(rs, 7)]; T1d = ii[WS(rs, 7)]; T1a = W[12]; T1c = W[13]; T1e = FMA(T1a, T1b, T1c * T1d); T21 = FNMS(T1c, T1b, T1a * T1d); } { E T1h, T1j, T1g, T1i; T1h = ri[WS(rs, 3)]; T1j = ii[WS(rs, 3)]; T1g = W[4]; T1i = W[5]; T1k = FMA(T1g, T1h, T1i * T1j); T1W = FNMS(T1i, T1h, T1g * T1j); } T1f = T19 + T1e; T1q = T1k + T1p; T2B = T1f - T1q; T2C = T20 + T21; T2D = T1W + T1X; T2E = T2C - T2D; { E T1V, T1Y, T22, T23; T1V = T19 - T1e; T1Y = T1W - T1X; T1Z = T1V - T1Y; T2j = T1V + T1Y; T22 = T20 - T21; T23 = T1k - T1p; T24 = T22 + T23; T2k = T22 - T23; } } { E TM, T1K, T12, T1R, TR, T1L, TX, T1Q; { E TJ, TL, TI, TK; TJ = ri[WS(rs, 1)]; TL = ii[WS(rs, 1)]; TI = W[0]; TK = W[1]; TM = FMA(TI, TJ, TK * TL); T1K = FNMS(TK, TJ, TI * TL); } { E TZ, T11, TY, T10; TZ = ri[WS(rs, 13)]; T11 = ii[WS(rs, 13)]; TY = W[24]; T10 = W[25]; T12 = FMA(TY, TZ, T10 * T11); T1R = FNMS(T10, TZ, TY * T11); } { E TO, TQ, TN, TP; TO = ri[WS(rs, 9)]; TQ = ii[WS(rs, 9)]; TN = W[16]; TP = W[17]; TR = FMA(TN, TO, TP * TQ); T1L = FNMS(TP, TO, TN * TQ); } { E TU, TW, TT, TV; TU = ri[WS(rs, 5)]; TW = ii[WS(rs, 5)]; TT = W[8]; TV = W[9]; TX = FMA(TT, TU, TV * TW); T1Q = FNMS(TV, TU, TT * TW); } TS = TM + TR; T13 = TX + T12; T2w = TS - T13; T2x = T1K + T1L; T2y = T1Q + T1R; T2z = T2x - T2y; { E T1M, T1N, T1P, T1S; T1M = T1K - T1L; T1N = TX - T12; T1O = T1M + T1N; T2g = T1M - T1N; T1P = TM - TR; T1S = T1Q - T1R; T1T = T1P - T1S; T2h = T1P + T1S; } } { E T1J, T27, T3g, T3i, T26, T3h, T2a, T3d; { E T1x, T1I, T3e, T3f; T1x = T1t - T1w; T1I = KP707106781 * (T1C - T1H); T1J = T1x + T1I; T27 = T1x - T1I; T3e = KP707106781 * (T2d - T2c); T3f = T38 + T37; T3g = T3e + T3f; T3i = T3f - T3e; } { E T1U, T25, T28, T29; T1U = FMA(KP923879532, T1O, KP382683432 * T1T); T25 = FNMS(KP923879532, T24, KP382683432 * T1Z); T26 = T1U + T25; T3h = T25 - T1U; T28 = FNMS(KP923879532, T1T, KP382683432 * T1O); T29 = FMA(KP382683432, T24, KP923879532 * T1Z); T2a = T28 - T29; T3d = T28 + T29; } ri[WS(rs, 11)] = T1J - T26; ii[WS(rs, 11)] = T3g - T3d; ri[WS(rs, 3)] = T1J + T26; ii[WS(rs, 3)] = T3d + T3g; ri[WS(rs, 15)] = T27 - T2a; ii[WS(rs, 15)] = T3i - T3h; ri[WS(rs, 7)] = T27 + T2a; ii[WS(rs, 7)] = T3h + T3i; } { E T2v, T2H, T32, T34, T2G, T33, T2K, T2Z; { E T2r, T2u, T30, T31; T2r = T7 - Ti; T2u = T2s - T2t; T2v = T2r + T2u; T2H = T2r - T2u; T30 = TF - Tu; T31 = T2U - T2R; T32 = T30 + T31; T34 = T31 - T30; } { E T2A, T2F, T2I, T2J; T2A = T2w + T2z; T2F = T2B - T2E; T2G = KP707106781 * (T2A + T2F); T33 = KP707106781 * (T2F - T2A); T2I = T2z - T2w; T2J = T2B + T2E; T2K = KP707106781 * (T2I - T2J); T2Z = KP707106781 * (T2I + T2J); } ri[WS(rs, 10)] = T2v - T2G; ii[WS(rs, 10)] = T32 - T2Z; ri[WS(rs, 2)] = T2v + T2G; ii[WS(rs, 2)] = T2Z + T32; ri[WS(rs, 14)] = T2H - T2K; ii[WS(rs, 14)] = T34 - T33; ri[WS(rs, 6)] = T2H + T2K; ii[WS(rs, 6)] = T33 + T34; } { E T2f, T2n, T3a, T3c, T2m, T3b, T2q, T35; { E T2b, T2e, T36, T39; T2b = T1t + T1w; T2e = KP707106781 * (T2c + T2d); T2f = T2b + T2e; T2n = T2b - T2e; T36 = KP707106781 * (T1C + T1H); T39 = T37 - T38; T3a = T36 + T39; T3c = T39 - T36; } { E T2i, T2l, T2o, T2p; T2i = FMA(KP382683432, T2g, KP923879532 * T2h); T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); T2m = T2i + T2l; T3b = T2l - T2i; T2o = FNMS(KP382683432, T2h, KP923879532 * T2g); T2p = FMA(KP923879532, T2k, KP382683432 * T2j); T2q = T2o - T2p; T35 = T2o + T2p; } ri[WS(rs, 9)] = T2f - T2m; ii[WS(rs, 9)] = T3a - T35; ri[WS(rs, 1)] = T2f + T2m; ii[WS(rs, 1)] = T35 + T3a; ri[WS(rs, 13)] = T2n - T2q; ii[WS(rs, 13)] = T3c - T3b; ri[WS(rs, 5)] = T2n + T2q; ii[WS(rs, 5)] = T3b + T3c; } { E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P; { E Tj, TG, T2Q, T2V; Tj = T7 + Ti; TG = Tu + TF; TH = Tj + TG; T2L = Tj - TG; T2Q = T2s + T2t; T2V = T2R + T2U; T2W = T2Q + T2V; T2Y = T2V - T2Q; } { E T14, T1r, T2M, T2N; T14 = TS + T13; T1r = T1f + T1q; T1s = T14 + T1r; T2X = T1r - T14; T2M = T2x + T2y; T2N = T2C + T2D; T2O = T2M - T2N; T2P = T2M + T2N; } ri[WS(rs, 8)] = TH - T1s; ii[WS(rs, 8)] = T2W - T2P; ri[0] = TH + T1s; ii[0] = T2P + T2W; ri[WS(rs, 12)] = T2L - T2O; ii[WS(rs, 12)] = T2Y - T2X; ri[WS(rs, 4)] = T2L + T2O; ii[WS(rs, 4)] = T2X + T2Y; } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 16}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, {136, 46, 38, 0}, 0, 0, 0 }; void X(codelet_t1_16) (planner *p) { X(kdft_dit_register) (p, t1_16, &desc); } #endif