/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:15 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include dft/scalar/t.h */ /* * This function contains 246 FP additions, 148 FP multiplications, * (or, 136 additions, 38 multiplications, 110 fused multiply/add), * 61 stack variables, 4 constants, and 80 memory accesses */ #include "dft/scalar/t.h" static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT m; for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { E T8, T4N, T2i, T4r, Tl, T4O, T2n, T4n, TN, T2b, T40, T4b, T2v, T3v, T3i; E T3F, T27, T2f, T3W, T4f, T2R, T3z, T3a, T3J, T1G, T2e, T3T, T4e, T2K, T3y; E T33, T3I, T1e, T2c, T43, T4c, T2C, T3w, T3p, T3G; { E T1, T4q, T3, T6, T4, T4o, T2, T7, T4p, T5; T1 = ri[0]; T4q = ii[0]; T3 = ri[WS(rs, 10)]; T6 = ii[WS(rs, 10)]; T2 = W[18]; T4 = T2 * T3; T4o = T2 * T6; T5 = W[19]; T7 = FMA(T5, T6, T4); T4p = FNMS(T5, T3, T4o); T8 = T1 + T7; T4N = T4q - T4p; T2i = T1 - T7; T4r = T4p + T4q; } { E Ta, Td, Tb, T2j, Tg, Tj, Th, T2l, T9, Tf; Ta = ri[WS(rs, 5)]; Td = ii[WS(rs, 5)]; T9 = W[8]; Tb = T9 * Ta; T2j = T9 * Td; Tg = ri[WS(rs, 15)]; Tj = ii[WS(rs, 15)]; Tf = W[28]; Th = Tf * Tg; T2l = Tf * Tj; { E Te, T2k, Tk, T2m, Tc, Ti; Tc = W[9]; Te = FMA(Tc, Td, Tb); T2k = FNMS(Tc, Ta, T2j); Ti = W[29]; Tk = FMA(Ti, Tj, Th); T2m = FNMS(Ti, Tg, T2l); Tl = Te + Tk; T4O = Te - Tk; T2n = T2k - T2m; T4n = T2k + T2m; } } { E Ts, T3d, TL, T2t, Ty, T3f, TF, T2r; { E To, Tr, Tp, T3c, Tn, Tq; To = ri[WS(rs, 4)]; Tr = ii[WS(rs, 4)]; Tn = W[6]; Tp = Tn * To; T3c = Tn * Tr; Tq = W[7]; Ts = FMA(Tq, Tr, Tp); T3d = FNMS(Tq, To, T3c); } { E TH, TK, TI, T2s, TG, TJ; TH = ri[WS(rs, 19)]; TK = ii[WS(rs, 19)]; TG = W[36]; TI = TG * TH; T2s = TG * TK; TJ = W[37]; TL = FMA(TJ, TK, TI); T2t = FNMS(TJ, TH, T2s); } { E Tu, Tx, Tv, T3e, Tt, Tw; Tu = ri[WS(rs, 14)]; Tx = ii[WS(rs, 14)]; Tt = W[26]; Tv = Tt * Tu; T3e = Tt * Tx; Tw = W[27]; Ty = FMA(Tw, Tx, Tv); T3f = FNMS(Tw, Tu, T3e); } { E TB, TE, TC, T2q, TA, TD; TB = ri[WS(rs, 9)]; TE = ii[WS(rs, 9)]; TA = W[16]; TC = TA * TB; T2q = TA * TE; TD = W[17]; TF = FMA(TD, TE, TC); T2r = FNMS(TD, TB, T2q); } { E Tz, TM, T3Y, T3Z; Tz = Ts + Ty; TM = TF + TL; TN = Tz - TM; T2b = Tz + TM; T3Y = T3d + T3f; T3Z = T2r + T2t; T40 = T3Y - T3Z; T4b = T3Y + T3Z; } { E T2p, T2u, T3g, T3h; T2p = Ts - Ty; T2u = T2r - T2t; T2v = T2p - T2u; T3v = T2p + T2u; T3g = T3d - T3f; T3h = TF - TL; T3i = T3g + T3h; T3F = T3g - T3h; } } { E T1M, T35, T25, T2P, T1S, T37, T1Z, T2N; { E T1I, T1L, T1J, T34, T1H, T1K; T1I = ri[WS(rs, 12)]; T1L = ii[WS(rs, 12)]; T1H = W[22]; T1J = T1H * T1I; T34 = T1H * T1L; T1K = W[23]; T1M = FMA(T1K, T1L, T1J); T35 = FNMS(T1K, T1I, T34); } { E T21, T24, T22, T2O, T20, T23; T21 = ri[WS(rs, 7)]; T24 = ii[WS(rs, 7)]; T20 = W[12]; T22 = T20 * T21; T2O = T20 * T24; T23 = W[13]; T25 = FMA(T23, T24, T22); T2P = FNMS(T23, T21, T2O); } { E T1O, T1R, T1P, T36, T1N, T1Q; T1O = ri[WS(rs, 2)]; T1R = ii[WS(rs, 2)]; T1N = W[2]; T1P = T1N * T1O; T36 = T1N * T1R; T1Q = W[3]; T1S = FMA(T1Q, T1R, T1P); T37 = FNMS(T1Q, T1O, T36); } { E T1V, T1Y, T1W, T2M, T1U, T1X; T1V = ri[WS(rs, 17)]; T1Y = ii[WS(rs, 17)]; T1U = W[32]; T1W = T1U * T1V; T2M = T1U * T1Y; T1X = W[33]; T1Z = FMA(T1X, T1Y, T1W); T2N = FNMS(T1X, T1V, T2M); } { E T1T, T26, T3U, T3V; T1T = T1M + T1S; T26 = T1Z + T25; T27 = T1T - T26; T2f = T1T + T26; T3U = T35 + T37; T3V = T2N + T2P; T3W = T3U - T3V; T4f = T3U + T3V; } { E T2L, T2Q, T38, T39; T2L = T1M - T1S; T2Q = T2N - T2P; T2R = T2L - T2Q; T3z = T2L + T2Q; T38 = T35 - T37; T39 = T1Z - T25; T3a = T38 + T39; T3J = T38 - T39; } } { E T1l, T2Y, T1E, T2I, T1r, T30, T1y, T2G; { E T1h, T1k, T1i, T2X, T1g, T1j; T1h = ri[WS(rs, 8)]; T1k = ii[WS(rs, 8)]; T1g = W[14]; T1i = T1g * T1h; T2X = T1g * T1k; T1j = W[15]; T1l = FMA(T1j, T1k, T1i); T2Y = FNMS(T1j, T1h, T2X); } { E T1A, T1D, T1B, T2H, T1z, T1C; T1A = ri[WS(rs, 3)]; T1D = ii[WS(rs, 3)]; T1z = W[4]; T1B = T1z * T1A; T2H = T1z * T1D; T1C = W[5]; T1E = FMA(T1C, T1D, T1B); T2I = FNMS(T1C, T1A, T2H); } { E T1n, T1q, T1o, T2Z, T1m, T1p; T1n = ri[WS(rs, 18)]; T1q = ii[WS(rs, 18)]; T1m = W[34]; T1o = T1m * T1n; T2Z = T1m * T1q; T1p = W[35]; T1r = FMA(T1p, T1q, T1o); T30 = FNMS(T1p, T1n, T2Z); } { E T1u, T1x, T1v, T2F, T1t, T1w; T1u = ri[WS(rs, 13)]; T1x = ii[WS(rs, 13)]; T1t = W[24]; T1v = T1t * T1u; T2F = T1t * T1x; T1w = W[25]; T1y = FMA(T1w, T1x, T1v); T2G = FNMS(T1w, T1u, T2F); } { E T1s, T1F, T3R, T3S; T1s = T1l + T1r; T1F = T1y + T1E; T1G = T1s - T1F; T2e = T1s + T1F; T3R = T2Y + T30; T3S = T2G + T2I; T3T = T3R - T3S; T4e = T3R + T3S; } { E T2E, T2J, T31, T32; T2E = T1l - T1r; T2J = T2G - T2I; T2K = T2E - T2J; T3y = T2E + T2J; T31 = T2Y - T30; T32 = T1y - T1E; T33 = T31 + T32; T3I = T31 - T32; } } { E TT, T3k, T1c, T2A, TZ, T3m, T16, T2y; { E TP, TS, TQ, T3j, TO, TR; TP = ri[WS(rs, 16)]; TS = ii[WS(rs, 16)]; TO = W[30]; TQ = TO * TP; T3j = TO * TS; TR = W[31]; TT = FMA(TR, TS, TQ); T3k = FNMS(TR, TP, T3j); } { E T18, T1b, T19, T2z, T17, T1a; T18 = ri[WS(rs, 11)]; T1b = ii[WS(rs, 11)]; T17 = W[20]; T19 = T17 * T18; T2z = T17 * T1b; T1a = W[21]; T1c = FMA(T1a, T1b, T19); T2A = FNMS(T1a, T18, T2z); } { E TV, TY, TW, T3l, TU, TX; TV = ri[WS(rs, 6)]; TY = ii[WS(rs, 6)]; TU = W[10]; TW = TU * TV; T3l = TU * TY; TX = W[11]; TZ = FMA(TX, TY, TW); T3m = FNMS(TX, TV, T3l); } { E T12, T15, T13, T2x, T11, T14; T12 = ri[WS(rs, 1)]; T15 = ii[WS(rs, 1)]; T11 = W[0]; T13 = T11 * T12; T2x = T11 * T15; T14 = W[1]; T16 = FMA(T14, T15, T13); T2y = FNMS(T14, T12, T2x); } { E T10, T1d, T41, T42; T10 = TT + TZ; T1d = T16 + T1c; T1e = T10 - T1d; T2c = T10 + T1d; T41 = T3k + T3m; T42 = T2y + T2A; T43 = T41 - T42; T4c = T41 + T42; } { E T2w, T2B, T3n, T3o; T2w = TT - TZ; T2B = T2y - T2A; T2C = T2w - T2B; T3w = T2w + T2B; T3n = T3k - T3m; T3o = T16 - T1c; T3p = T3n + T3o; T3G = T3n - T3o; } } { E T45, T47, Tm, T29, T3O, T3P, T46, T3Q; { E T3X, T44, T1f, T28; T3X = T3T - T3W; T44 = T40 - T43; T45 = FNMS(KP618033988, T44, T3X); T47 = FMA(KP618033988, T3X, T44); Tm = T8 - Tl; T1f = TN + T1e; T28 = T1G + T27; T29 = T1f + T28; T3O = FNMS(KP250000000, T29, Tm); T3P = T1f - T28; } ri[WS(rs, 10)] = Tm + T29; T46 = FMA(KP559016994, T3P, T3O); ri[WS(rs, 14)] = FNMS(KP951056516, T47, T46); ri[WS(rs, 6)] = FMA(KP951056516, T47, T46); T3Q = FNMS(KP559016994, T3P, T3O); ri[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q); ri[WS(rs, 18)] = FMA(KP951056516, T45, T3Q); } { E T4K, T4M, T4B, T4E, T4F, T4G, T4L, T4H; { E T4I, T4J, T4C, T4D; T4I = T1G - T27; T4J = TN - T1e; T4K = FNMS(KP618033988, T4J, T4I); T4M = FMA(KP618033988, T4I, T4J); T4B = T4r - T4n; T4C = T40 + T43; T4D = T3T + T3W; T4E = T4C + T4D; T4F = FNMS(KP250000000, T4E, T4B); T4G = T4C - T4D; } ii[WS(rs, 10)] = T4E + T4B; T4L = FMA(KP559016994, T4G, T4F); ii[WS(rs, 6)] = FNMS(KP951056516, T4M, T4L); ii[WS(rs, 14)] = FMA(KP951056516, T4M, T4L); T4H = FNMS(KP559016994, T4G, T4F); ii[WS(rs, 2)] = FMA(KP951056516, T4K, T4H); ii[WS(rs, 18)] = FNMS(KP951056516, T4K, T4H); } { E T4h, T4j, T2a, T2h, T48, T49, T4i, T4a; { E T4d, T4g, T2d, T2g; T4d = T4b - T4c; T4g = T4e - T4f; T4h = FMA(KP618033988, T4g, T4d); T4j = FNMS(KP618033988, T4d, T4g); T2a = T8 + Tl; T2d = T2b + T2c; T2g = T2e + T2f; T2h = T2d + T2g; T48 = FNMS(KP250000000, T2h, T2a); T49 = T2d - T2g; } ri[0] = T2a + T2h; T4i = FNMS(KP559016994, T49, T48); ri[WS(rs, 12)] = FNMS(KP951056516, T4j, T4i); ri[WS(rs, 8)] = FMA(KP951056516, T4j, T4i); T4a = FMA(KP559016994, T49, T48); ri[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a); ri[WS(rs, 16)] = FMA(KP951056516, T4h, T4a); } { E T4y, T4A, T4s, T4m, T4t, T4u, T4z, T4v; { E T4w, T4x, T4k, T4l; T4w = T2b - T2c; T4x = T2e - T2f; T4y = FMA(KP618033988, T4x, T4w); T4A = FNMS(KP618033988, T4w, T4x); T4s = T4n + T4r; T4k = T4b + T4c; T4l = T4e + T4f; T4m = T4k + T4l; T4t = FNMS(KP250000000, T4m, T4s); T4u = T4k - T4l; } ii[0] = T4m + T4s; T4z = FNMS(KP559016994, T4u, T4t); ii[WS(rs, 8)] = FNMS(KP951056516, T4A, T4z); ii[WS(rs, 12)] = FMA(KP951056516, T4A, T4z); T4v = FMA(KP559016994, T4u, T4t); ii[WS(rs, 4)] = FMA(KP951056516, T4y, T4v); ii[WS(rs, 16)] = FNMS(KP951056516, T4y, T4v); } { E T3r, T3t, T2o, T2T, T2U, T2V, T3s, T2W; { E T3b, T3q, T2D, T2S; T3b = T33 - T3a; T3q = T3i - T3p; T3r = FNMS(KP618033988, T3q, T3b); T3t = FMA(KP618033988, T3b, T3q); T2o = T2i - T2n; T2D = T2v + T2C; T2S = T2K + T2R; T2T = T2D + T2S; T2U = FNMS(KP250000000, T2T, T2o); T2V = T2D - T2S; } ri[WS(rs, 15)] = T2o + T2T; T3s = FMA(KP559016994, T2V, T2U); ri[WS(rs, 11)] = FMA(KP951056516, T3t, T3s); ri[WS(rs, 19)] = FNMS(KP951056516, T3t, T3s); T2W = FNMS(KP559016994, T2V, T2U); ri[WS(rs, 3)] = FMA(KP951056516, T3r, T2W); ri[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W); } { E T5a, T5c, T51, T54, T55, T56, T5b, T57; { E T58, T59, T52, T53; T58 = T2K - T2R; T59 = T2v - T2C; T5a = FNMS(KP618033988, T59, T58); T5c = FMA(KP618033988, T58, T59); T51 = T4O + T4N; T52 = T3i + T3p; T53 = T33 + T3a; T54 = T52 + T53; T55 = FNMS(KP250000000, T54, T51); T56 = T52 - T53; } ii[WS(rs, 15)] = T54 + T51; T5b = FMA(KP559016994, T56, T55); ii[WS(rs, 11)] = FNMS(KP951056516, T5c, T5b); ii[WS(rs, 19)] = FMA(KP951056516, T5c, T5b); T57 = FNMS(KP559016994, T56, T55); ii[WS(rs, 3)] = FNMS(KP951056516, T5a, T57); ii[WS(rs, 7)] = FMA(KP951056516, T5a, T57); } { E T3L, T3N, T3u, T3B, T3C, T3D, T3M, T3E; { E T3H, T3K, T3x, T3A; T3H = T3F - T3G; T3K = T3I - T3J; T3L = FMA(KP618033988, T3K, T3H); T3N = FNMS(KP618033988, T3H, T3K); T3u = T2i + T2n; T3x = T3v + T3w; T3A = T3y + T3z; T3B = T3x + T3A; T3C = FNMS(KP250000000, T3B, T3u); T3D = T3x - T3A; } ri[WS(rs, 5)] = T3u + T3B; T3M = FNMS(KP559016994, T3D, T3C); ri[WS(rs, 13)] = FMA(KP951056516, T3N, T3M); ri[WS(rs, 17)] = FNMS(KP951056516, T3N, T3M); T3E = FMA(KP559016994, T3D, T3C); ri[WS(rs, 1)] = FMA(KP951056516, T3L, T3E); ri[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E); } { E T4Y, T50, T4P, T4S, T4T, T4U, T4Z, T4V; { E T4W, T4X, T4Q, T4R; T4W = T3v - T3w; T4X = T3y - T3z; T4Y = FMA(KP618033988, T4X, T4W); T50 = FNMS(KP618033988, T4W, T4X); T4P = T4N - T4O; T4Q = T3F + T3G; T4R = T3I + T3J; T4S = T4Q + T4R; T4T = FNMS(KP250000000, T4S, T4P); T4U = T4Q - T4R; } ii[WS(rs, 5)] = T4S + T4P; T4Z = FNMS(KP559016994, T4U, T4T); ii[WS(rs, 13)] = FNMS(KP951056516, T50, T4Z); ii[WS(rs, 17)] = FMA(KP951056516, T50, T4Z); T4V = FMA(KP559016994, T4U, T4T); ii[WS(rs, 1)] = FNMS(KP951056516, T4Y, T4V); ii[WS(rs, 9)] = FMA(KP951056516, T4Y, T4V); } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 20}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {136, 38, 110, 0}, 0, 0, 0 }; void X(codelet_t1_20) (planner *p) { X(kdft_dit_register) (p, t1_20, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include dft/scalar/t.h */ /* * This function contains 246 FP additions, 124 FP multiplications, * (or, 184 additions, 62 multiplications, 62 fused multiply/add), * 85 stack variables, 4 constants, and 80 memory accesses */ #include "dft/scalar/t.h" static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { E Tj, T1R, T4g, T4p, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T44, T3D; E T3E, T3K, T1V, T1W, T1X, T23, T28, T4r, T2W, T2X, T4c, T33, T34, T35, T2G; E T2L, T2M, TG, T13, T14, T3p, T3s, T43, T3A, T3B, T3J, T1S, T1T, T1U, T2e; E T2j, T4q, T2T, T2U, T4b, T30, T31, T32, T2v, T2A, T2B; { E T1, T3O, T6, T3N, Tc, T2n, Th, T2o; T1 = ri[0]; T3O = ii[0]; { E T3, T5, T2, T4; T3 = ri[WS(rs, 10)]; T5 = ii[WS(rs, 10)]; T2 = W[18]; T4 = W[19]; T6 = FMA(T2, T3, T4 * T5); T3N = FNMS(T4, T3, T2 * T5); } { E T9, Tb, T8, Ta; T9 = ri[WS(rs, 5)]; Tb = ii[WS(rs, 5)]; T8 = W[8]; Ta = W[9]; Tc = FMA(T8, T9, Ta * Tb); T2n = FNMS(Ta, T9, T8 * Tb); } { E Te, Tg, Td, Tf; Te = ri[WS(rs, 15)]; Tg = ii[WS(rs, 15)]; Td = W[28]; Tf = W[29]; Th = FMA(Td, Te, Tf * Tg); T2o = FNMS(Tf, Te, Td * Tg); } { E T7, Ti, T4e, T4f; T7 = T1 + T6; Ti = Tc + Th; Tj = T7 - Ti; T1R = T7 + Ti; T4e = T3O - T3N; T4f = Tc - Th; T4g = T4e - T4f; T4p = T4f + T4e; } { E T2m, T2p, T3M, T3P; T2m = T1 - T6; T2p = T2n - T2o; T2q = T2m - T2p; T37 = T2m + T2p; T3M = T2n + T2o; T3P = T3N + T3O; T3Q = T3M + T3P; T42 = T3P - T3M; } } { E T1f, T3g, T21, T2C, T1N, T3k, T27, T2K, T1q, T3h, T22, T2F, T1C, T3j, T26; E T2H; { E T19, T1Z, T1e, T20; { E T16, T18, T15, T17; T16 = ri[WS(rs, 8)]; T18 = ii[WS(rs, 8)]; T15 = W[14]; T17 = W[15]; T19 = FMA(T15, T16, T17 * T18); T1Z = FNMS(T17, T16, T15 * T18); } { E T1b, T1d, T1a, T1c; T1b = ri[WS(rs, 18)]; T1d = ii[WS(rs, 18)]; T1a = W[34]; T1c = W[35]; T1e = FMA(T1a, T1b, T1c * T1d); T20 = FNMS(T1c, T1b, T1a * T1d); } T1f = T19 + T1e; T3g = T1Z + T20; T21 = T1Z - T20; T2C = T19 - T1e; } { E T1H, T2I, T1M, T2J; { E T1E, T1G, T1D, T1F; T1E = ri[WS(rs, 17)]; T1G = ii[WS(rs, 17)]; T1D = W[32]; T1F = W[33]; T1H = FMA(T1D, T1E, T1F * T1G); T2I = FNMS(T1F, T1E, T1D * T1G); } { E T1J, T1L, T1I, T1K; T1J = ri[WS(rs, 7)]; T1L = ii[WS(rs, 7)]; T1I = W[12]; T1K = W[13]; T1M = FMA(T1I, T1J, T1K * T1L); T2J = FNMS(T1K, T1J, T1I * T1L); } T1N = T1H + T1M; T3k = T2I + T2J; T27 = T1H - T1M; T2K = T2I - T2J; } { E T1k, T2D, T1p, T2E; { E T1h, T1j, T1g, T1i; T1h = ri[WS(rs, 13)]; T1j = ii[WS(rs, 13)]; T1g = W[24]; T1i = W[25]; T1k = FMA(T1g, T1h, T1i * T1j); T2D = FNMS(T1i, T1h, T1g * T1j); } { E T1m, T1o, T1l, T1n; T1m = ri[WS(rs, 3)]; T1o = ii[WS(rs, 3)]; T1l = W[4]; T1n = W[5]; T1p = FMA(T1l, T1m, T1n * T1o); T2E = FNMS(T1n, T1m, T1l * T1o); } T1q = T1k + T1p; T3h = T2D + T2E; T22 = T1k - T1p; T2F = T2D - T2E; } { E T1w, T24, T1B, T25; { E T1t, T1v, T1s, T1u; T1t = ri[WS(rs, 12)]; T1v = ii[WS(rs, 12)]; T1s = W[22]; T1u = W[23]; T1w = FMA(T1s, T1t, T1u * T1v); T24 = FNMS(T1u, T1t, T1s * T1v); } { E T1y, T1A, T1x, T1z; T1y = ri[WS(rs, 2)]; T1A = ii[WS(rs, 2)]; T1x = W[2]; T1z = W[3]; T1B = FMA(T1x, T1y, T1z * T1A); T25 = FNMS(T1z, T1y, T1x * T1A); } T1C = T1w + T1B; T3j = T24 + T25; T26 = T24 - T25; T2H = T1w - T1B; } T1r = T1f - T1q; T1O = T1C - T1N; T1P = T1r + T1O; T3i = T3g - T3h; T3l = T3j - T3k; T44 = T3i + T3l; T3D = T3g + T3h; T3E = T3j + T3k; T3K = T3D + T3E; T1V = T1f + T1q; T1W = T1C + T1N; T1X = T1V + T1W; T23 = T21 + T22; T28 = T26 + T27; T4r = T23 + T28; T2W = T21 - T22; T2X = T26 - T27; T4c = T2W + T2X; T33 = T2C + T2F; T34 = T2H + T2K; T35 = T33 + T34; T2G = T2C - T2F; T2L = T2H - T2K; T2M = T2G + T2L; } { E Tu, T3n, T2c, T2r, T12, T3r, T2i, T2z, TF, T3o, T2d, T2u, TR, T3q, T2h; E T2w; { E To, T2a, Tt, T2b; { E Tl, Tn, Tk, Tm; Tl = ri[WS(rs, 4)]; Tn = ii[WS(rs, 4)]; Tk = W[6]; Tm = W[7]; To = FMA(Tk, Tl, Tm * Tn); T2a = FNMS(Tm, Tl, Tk * Tn); } { E Tq, Ts, Tp, Tr; Tq = ri[WS(rs, 14)]; Ts = ii[WS(rs, 14)]; Tp = W[26]; Tr = W[27]; Tt = FMA(Tp, Tq, Tr * Ts); T2b = FNMS(Tr, Tq, Tp * Ts); } Tu = To + Tt; T3n = T2a + T2b; T2c = T2a - T2b; T2r = To - Tt; } { E TW, T2x, T11, T2y; { E TT, TV, TS, TU; TT = ri[WS(rs, 1)]; TV = ii[WS(rs, 1)]; TS = W[0]; TU = W[1]; TW = FMA(TS, TT, TU * TV); T2x = FNMS(TU, TT, TS * TV); } { E TY, T10, TX, TZ; TY = ri[WS(rs, 11)]; T10 = ii[WS(rs, 11)]; TX = W[20]; TZ = W[21]; T11 = FMA(TX, TY, TZ * T10); T2y = FNMS(TZ, TY, TX * T10); } T12 = TW + T11; T3r = T2x + T2y; T2i = TW - T11; T2z = T2x - T2y; } { E Tz, T2s, TE, T2t; { E Tw, Ty, Tv, Tx; Tw = ri[WS(rs, 9)]; Ty = ii[WS(rs, 9)]; Tv = W[16]; Tx = W[17]; Tz = FMA(Tv, Tw, Tx * Ty); T2s = FNMS(Tx, Tw, Tv * Ty); } { E TB, TD, TA, TC; TB = ri[WS(rs, 19)]; TD = ii[WS(rs, 19)]; TA = W[36]; TC = W[37]; TE = FMA(TA, TB, TC * TD); T2t = FNMS(TC, TB, TA * TD); } TF = Tz + TE; T3o = T2s + T2t; T2d = Tz - TE; T2u = T2s - T2t; } { E TL, T2f, TQ, T2g; { E TI, TK, TH, TJ; TI = ri[WS(rs, 16)]; TK = ii[WS(rs, 16)]; TH = W[30]; TJ = W[31]; TL = FMA(TH, TI, TJ * TK); T2f = FNMS(TJ, TI, TH * TK); } { E TN, TP, TM, TO; TN = ri[WS(rs, 6)]; TP = ii[WS(rs, 6)]; TM = W[10]; TO = W[11]; TQ = FMA(TM, TN, TO * TP); T2g = FNMS(TO, TN, TM * TP); } TR = TL + TQ; T3q = T2f + T2g; T2h = T2f - T2g; T2w = TL - TQ; } TG = Tu - TF; T13 = TR - T12; T14 = TG + T13; T3p = T3n - T3o; T3s = T3q - T3r; T43 = T3p + T3s; T3A = T3n + T3o; T3B = T3q + T3r; T3J = T3A + T3B; T1S = Tu + TF; T1T = TR + T12; T1U = T1S + T1T; T2e = T2c + T2d; T2j = T2h + T2i; T4q = T2e + T2j; T2T = T2c - T2d; T2U = T2h - T2i; T4b = T2T + T2U; T30 = T2r + T2u; T31 = T2w + T2z; T32 = T30 + T31; T2v = T2r - T2u; T2A = T2w - T2z; T2B = T2v + T2A; } { E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f; T3e = KP559016994 * (T14 - T1P); T1Q = T14 + T1P; T3d = FNMS(KP250000000, T1Q, Tj); T3m = T3i - T3l; T3t = T3p - T3s; T3u = FNMS(KP587785252, T3t, KP951056516 * T3m); T3w = FMA(KP951056516, T3t, KP587785252 * T3m); ri[WS(rs, 10)] = Tj + T1Q; T3v = T3e + T3d; ri[WS(rs, 14)] = T3v - T3w; ri[WS(rs, 6)] = T3v + T3w; T3f = T3d - T3e; ri[WS(rs, 2)] = T3f - T3u; ri[WS(rs, 18)] = T3f + T3u; } { E T47, T45, T46, T41, T4a, T3Z, T40, T49, T48; T47 = KP559016994 * (T43 - T44); T45 = T43 + T44; T46 = FNMS(KP250000000, T45, T42); T3Z = T1r - T1O; T40 = TG - T13; T41 = FNMS(KP587785252, T40, KP951056516 * T3Z); T4a = FMA(KP951056516, T40, KP587785252 * T3Z); ii[WS(rs, 10)] = T45 + T42; T49 = T47 + T46; ii[WS(rs, 6)] = T49 - T4a; ii[WS(rs, 14)] = T4a + T49; T48 = T46 - T47; ii[WS(rs, 2)] = T41 + T48; ii[WS(rs, 18)] = T48 - T41; } { E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z; T3x = KP559016994 * (T1U - T1X); T1Y = T1U + T1X; T3y = FNMS(KP250000000, T1Y, T1R); T3C = T3A - T3B; T3F = T3D - T3E; T3G = FMA(KP951056516, T3C, KP587785252 * T3F); T3I = FNMS(KP587785252, T3C, KP951056516 * T3F); ri[0] = T1R + T1Y; T3H = T3y - T3x; ri[WS(rs, 12)] = T3H - T3I; ri[WS(rs, 8)] = T3H + T3I; T3z = T3x + T3y; ri[WS(rs, 4)] = T3z - T3G; ri[WS(rs, 16)] = T3z + T3G; } { E T3U, T3L, T3V, T3T, T3Y, T3R, T3S, T3X, T3W; T3U = KP559016994 * (T3J - T3K); T3L = T3J + T3K; T3V = FNMS(KP250000000, T3L, T3Q); T3R = T1S - T1T; T3S = T1V - T1W; T3T = FMA(KP951056516, T3R, KP587785252 * T3S); T3Y = FNMS(KP587785252, T3R, KP951056516 * T3S); ii[0] = T3L + T3Q; T3X = T3V - T3U; ii[WS(rs, 8)] = T3X - T3Y; ii[WS(rs, 12)] = T3Y + T3X; T3W = T3U + T3V; ii[WS(rs, 4)] = T3T + T3W; ii[WS(rs, 16)] = T3W - T3T; } { E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q; T2P = KP559016994 * (T2B - T2M); T2N = T2B + T2M; T2O = FNMS(KP250000000, T2N, T2q); T29 = T23 - T28; T2k = T2e - T2j; T2l = FNMS(KP587785252, T2k, KP951056516 * T29); T2R = FMA(KP951056516, T2k, KP587785252 * T29); ri[WS(rs, 15)] = T2q + T2N; T2S = T2P + T2O; ri[WS(rs, 11)] = T2R + T2S; ri[WS(rs, 19)] = T2S - T2R; T2Q = T2O - T2P; ri[WS(rs, 3)] = T2l + T2Q; ri[WS(rs, 7)] = T2Q - T2l; } { E T4u, T4s, T4t, T4y, T4A, T4w, T4x, T4z, T4v; T4u = KP559016994 * (T4q - T4r); T4s = T4q + T4r; T4t = FNMS(KP250000000, T4s, T4p); T4w = T2G - T2L; T4x = T2v - T2A; T4y = FNMS(KP587785252, T4x, KP951056516 * T4w); T4A = FMA(KP951056516, T4x, KP587785252 * T4w); ii[WS(rs, 15)] = T4s + T4p; T4z = T4u + T4t; ii[WS(rs, 11)] = T4z - T4A; ii[WS(rs, 19)] = T4A + T4z; T4v = T4t - T4u; ii[WS(rs, 3)] = T4v - T4y; ii[WS(rs, 7)] = T4y + T4v; } { E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a; T36 = KP559016994 * (T32 - T35); T38 = T32 + T35; T39 = FNMS(KP250000000, T38, T37); T2V = T2T - T2U; T2Y = T2W - T2X; T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y); T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y); ri[WS(rs, 5)] = T37 + T38; T3c = T39 - T36; ri[WS(rs, 13)] = T3b + T3c; ri[WS(rs, 17)] = T3c - T3b; T3a = T36 + T39; ri[WS(rs, 1)] = T2Z + T3a; ri[WS(rs, 9)] = T3a - T2Z; } { E T4d, T4h, T4i, T4m, T4o, T4k, T4l, T4n, T4j; T4d = KP559016994 * (T4b - T4c); T4h = T4b + T4c; T4i = FNMS(KP250000000, T4h, T4g); T4k = T30 - T31; T4l = T33 - T34; T4m = FMA(KP951056516, T4k, KP587785252 * T4l); T4o = FNMS(KP587785252, T4k, KP951056516 * T4l); ii[WS(rs, 5)] = T4h + T4g; T4n = T4i - T4d; ii[WS(rs, 13)] = T4n - T4o; ii[WS(rs, 17)] = T4o + T4n; T4j = T4d + T4i; ii[WS(rs, 1)] = T4j - T4m; ii[WS(rs, 9)] = T4m + T4j; } } } } static const tw_instr twinstr[] = { {TW_FULL, 0, 20}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {184, 62, 62, 0}, 0, 0, 0 }; void X(codelet_t1_20) (planner *p) { X(kdft_dit_register) (p, t1_20, &desc); } #endif