/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:25 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include dft/scalar/t.h */ /* * This function contains 114 FP additions, 94 FP multiplications, * (or, 48 additions, 28 multiplications, 66 fused multiply/add), * 63 stack variables, 4 constants, and 40 memory accesses */ #include "dft/scalar/t.h" static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(20, rs)) { E T2, T3, T8, Tc, T5, T6, Tl, T7, TB, TF, T12, TY, To, Ts, Tw; E Tb, Td, Th; { E TA, TX, TE, T11, Ta, T4; T2 = W[0]; T3 = W[2]; T4 = T2 * T3; T8 = W[4]; TA = T2 * T8; TX = T3 * T8; Tc = W[5]; TE = T2 * Tc; T11 = T3 * Tc; T5 = W[1]; T6 = W[3]; Ta = T2 * T6; Tl = FMA(T5, T6, T4); T7 = FNMS(T5, T6, T4); TB = FMA(T5, Tc, TA); TF = FNMS(T5, T8, TE); T12 = FNMS(T6, T8, T11); TY = FMA(T6, Tc, TX); { E Tr, Tv, T9, Tg; Tr = Tl * T8; Tv = Tl * Tc; To = FNMS(T5, T3, Ta); Ts = FMA(To, Tc, Tr); Tw = FNMS(To, T8, Tv); T9 = T7 * T8; Tg = T7 * Tc; Tb = FMA(T5, T3, Ta); Td = FMA(Tb, Tc, T9); Th = FNMS(Tb, T8, Tg); } } { E Tk, T1c, T24, T2d, TW, T19, T1a, T1P, T1Q, T1Z, T1g, T1h, T1i, T1C, T1H; E T2f, Tz, TM, TN, T1S, T1T, T1Y, T1d, T1e, T1f, T1r, T1w, T2e; { E T1, T23, Te, Tf, Ti, T21, Tj, T22; T1 = ri[0]; T23 = ii[0]; Te = ri[WS(rs, 5)]; Tf = Td * Te; Ti = ii[WS(rs, 5)]; T21 = Td * Ti; Tj = FMA(Th, Ti, Tf); Tk = T1 - Tj; T1c = T1 + Tj; T22 = FNMS(Th, Te, T21); T24 = T22 + T23; T2d = T23 - T22; } { E TR, T1z, T18, T1G, TV, T1B, T14, T1E; { E TO, TP, TQ, T1y; TO = ri[WS(rs, 4)]; TP = T7 * TO; TQ = ii[WS(rs, 4)]; T1y = T7 * TQ; TR = FMA(Tb, TQ, TP); T1z = FNMS(Tb, TO, T1y); } { E T15, T16, T17, T1F; T15 = ri[WS(rs, 1)]; T16 = T2 * T15; T17 = ii[WS(rs, 1)]; T1F = T2 * T17; T18 = FMA(T5, T17, T16); T1G = FNMS(T5, T15, T1F); } { E TS, TT, TU, T1A; TS = ri[WS(rs, 9)]; TT = T8 * TS; TU = ii[WS(rs, 9)]; T1A = T8 * TU; TV = FMA(Tc, TU, TT); T1B = FNMS(Tc, TS, T1A); } { E TZ, T10, T13, T1D; TZ = ri[WS(rs, 6)]; T10 = TY * TZ; T13 = ii[WS(rs, 6)]; T1D = TY * T13; T14 = FMA(T12, T13, T10); T1E = FNMS(T12, TZ, T1D); } TW = TR - TV; T19 = T14 - T18; T1a = TW + T19; T1P = T1z + T1B; T1Q = T1E + T1G; T1Z = T1P + T1Q; T1g = TR + TV; T1h = T14 + T18; T1i = T1g + T1h; T1C = T1z - T1B; T1H = T1E - T1G; T2f = T1C + T1H; } { E Tq, T1o, TL, T1v, Ty, T1q, TH, T1t; { E Tm, Tn, Tp, T1n; Tm = ri[WS(rs, 2)]; Tn = Tl * Tm; Tp = ii[WS(rs, 2)]; T1n = Tl * Tp; Tq = FMA(To, Tp, Tn); T1o = FNMS(To, Tm, T1n); } { E TI, TJ, TK, T1u; TI = ri[WS(rs, 3)]; TJ = T3 * TI; TK = ii[WS(rs, 3)]; T1u = T3 * TK; TL = FMA(T6, TK, TJ); T1v = FNMS(T6, TI, T1u); } { E Tt, Tu, Tx, T1p; Tt = ri[WS(rs, 7)]; Tu = Ts * Tt; Tx = ii[WS(rs, 7)]; T1p = Ts * Tx; Ty = FMA(Tw, Tx, Tu); T1q = FNMS(Tw, Tt, T1p); } { E TC, TD, TG, T1s; TC = ri[WS(rs, 8)]; TD = TB * TC; TG = ii[WS(rs, 8)]; T1s = TB * TG; TH = FMA(TF, TG, TD); T1t = FNMS(TF, TC, T1s); } Tz = Tq - Ty; TM = TH - TL; TN = Tz + TM; T1S = T1o + T1q; T1T = T1t + T1v; T1Y = T1S + T1T; T1d = Tq + Ty; T1e = TH + TL; T1f = T1d + T1e; T1r = T1o - T1q; T1w = T1t - T1v; T2e = T1r + T1w; } { E T1l, T1b, T1k, T1J, T1L, T1x, T1I, T1K, T1m; T1l = TN - T1a; T1b = TN + T1a; T1k = FNMS(KP250000000, T1b, Tk); T1x = T1r - T1w; T1I = T1C - T1H; T1J = FMA(KP618033988, T1I, T1x); T1L = FNMS(KP618033988, T1x, T1I); ri[WS(rs, 5)] = Tk + T1b; T1K = FNMS(KP559016994, T1l, T1k); ri[WS(rs, 7)] = FNMS(KP951056516, T1L, T1K); ri[WS(rs, 3)] = FMA(KP951056516, T1L, T1K); T1m = FMA(KP559016994, T1l, T1k); ri[WS(rs, 9)] = FNMS(KP951056516, T1J, T1m); ri[WS(rs, 1)] = FMA(KP951056516, T1J, T1m); } { E T2i, T2g, T2h, T2m, T2o, T2k, T2l, T2n, T2j; T2i = T2e - T2f; T2g = T2e + T2f; T2h = FNMS(KP250000000, T2g, T2d); T2k = Tz - TM; T2l = TW - T19; T2m = FMA(KP618033988, T2l, T2k); T2o = FNMS(KP618033988, T2k, T2l); ii[WS(rs, 5)] = T2g + T2d; T2n = FNMS(KP559016994, T2i, T2h); ii[WS(rs, 3)] = FNMS(KP951056516, T2o, T2n); ii[WS(rs, 7)] = FMA(KP951056516, T2o, T2n); T2j = FMA(KP559016994, T2i, T2h); ii[WS(rs, 1)] = FNMS(KP951056516, T2m, T2j); ii[WS(rs, 9)] = FMA(KP951056516, T2m, T2j); } { E T1N, T1j, T1M, T1V, T1X, T1R, T1U, T1W, T1O; T1N = T1f - T1i; T1j = T1f + T1i; T1M = FNMS(KP250000000, T1j, T1c); T1R = T1P - T1Q; T1U = T1S - T1T; T1V = FNMS(KP618033988, T1U, T1R); T1X = FMA(KP618033988, T1R, T1U); ri[0] = T1c + T1j; T1W = FMA(KP559016994, T1N, T1M); ri[WS(rs, 4)] = FNMS(KP951056516, T1X, T1W); ri[WS(rs, 6)] = FMA(KP951056516, T1X, T1W); T1O = FNMS(KP559016994, T1N, T1M); ri[WS(rs, 2)] = FNMS(KP951056516, T1V, T1O); ri[WS(rs, 8)] = FMA(KP951056516, T1V, T1O); } { E T26, T20, T25, T2a, T2c, T28, T29, T2b, T27; T26 = T1Y - T1Z; T20 = T1Y + T1Z; T25 = FNMS(KP250000000, T20, T24); T28 = T1g - T1h; T29 = T1d - T1e; T2a = FNMS(KP618033988, T29, T28); T2c = FMA(KP618033988, T28, T29); ii[0] = T20 + T24; T2b = FMA(KP559016994, T26, T25); ii[WS(rs, 4)] = FMA(KP951056516, T2c, T2b); ii[WS(rs, 6)] = FNMS(KP951056516, T2c, T2b); T27 = FNMS(KP559016994, T26, T25); ii[WS(rs, 2)] = FMA(KP951056516, T2a, T27); ii[WS(rs, 8)] = FNMS(KP951056516, T2a, T27); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_CEXP, 0, 9}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, {48, 28, 66, 0}, 0, 0, 0 }; void X(codelet_t2_10) (planner *p) { X(kdft_dit_register) (p, t2_10, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include dft/scalar/t.h */ /* * This function contains 114 FP additions, 80 FP multiplications, * (or, 76 additions, 42 multiplications, 38 fused multiply/add), * 63 stack variables, 4 constants, and 40 memory accesses */ #include "dft/scalar/t.h" static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(20, rs)) { E T2, T5, T3, T6, T8, Tm, Tc, Tk, T9, Td, Te, TM, TO, Tg, Tp; E Tv, Tx, Tr; { E T4, Tb, T7, Ta; T2 = W[0]; T5 = W[1]; T3 = W[2]; T6 = W[3]; T4 = T2 * T3; Tb = T5 * T3; T7 = T5 * T6; Ta = T2 * T6; T8 = T4 - T7; Tm = Ta - Tb; Tc = Ta + Tb; Tk = T4 + T7; T9 = W[4]; Td = W[5]; Te = FMA(T8, T9, Tc * Td); TM = FMA(T3, T9, T6 * Td); TO = FNMS(T6, T9, T3 * Td); Tg = FNMS(Tc, T9, T8 * Td); Tp = FMA(Tk, T9, Tm * Td); Tv = FMA(T2, T9, T5 * Td); Tx = FNMS(T5, T9, T2 * Td); Tr = FNMS(Tm, T9, Tk * Td); } { E Tj, T1S, TX, T1G, TL, TU, TV, T1s, T1t, T1C, T11, T12, T13, T1h, T1k; E T1Q, Tu, TD, TE, T1v, T1w, T1B, TY, TZ, T10, T1a, T1d, T1P; { E T1, T1F, Ti, T1E, Tf, Th; T1 = ri[0]; T1F = ii[0]; Tf = ri[WS(rs, 5)]; Th = ii[WS(rs, 5)]; Ti = FMA(Te, Tf, Tg * Th); T1E = FNMS(Tg, Tf, Te * Th); Tj = T1 - Ti; T1S = T1F - T1E; TX = T1 + Ti; T1G = T1E + T1F; } { E TH, T1f, TT, T1j, TK, T1g, TQ, T1i; { E TF, TG, TR, TS; TF = ri[WS(rs, 4)]; TG = ii[WS(rs, 4)]; TH = FMA(T8, TF, Tc * TG); T1f = FNMS(Tc, TF, T8 * TG); TR = ri[WS(rs, 1)]; TS = ii[WS(rs, 1)]; TT = FMA(T2, TR, T5 * TS); T1j = FNMS(T5, TR, T2 * TS); } { E TI, TJ, TN, TP; TI = ri[WS(rs, 9)]; TJ = ii[WS(rs, 9)]; TK = FMA(T9, TI, Td * TJ); T1g = FNMS(Td, TI, T9 * TJ); TN = ri[WS(rs, 6)]; TP = ii[WS(rs, 6)]; TQ = FMA(TM, TN, TO * TP); T1i = FNMS(TO, TN, TM * TP); } TL = TH - TK; TU = TQ - TT; TV = TL + TU; T1s = T1f + T1g; T1t = T1i + T1j; T1C = T1s + T1t; T11 = TH + TK; T12 = TQ + TT; T13 = T11 + T12; T1h = T1f - T1g; T1k = T1i - T1j; T1Q = T1h + T1k; } { E To, T18, TC, T1c, Tt, T19, Tz, T1b; { E Tl, Tn, TA, TB; Tl = ri[WS(rs, 2)]; Tn = ii[WS(rs, 2)]; To = FMA(Tk, Tl, Tm * Tn); T18 = FNMS(Tm, Tl, Tk * Tn); TA = ri[WS(rs, 3)]; TB = ii[WS(rs, 3)]; TC = FMA(T3, TA, T6 * TB); T1c = FNMS(T6, TA, T3 * TB); } { E Tq, Ts, Tw, Ty; Tq = ri[WS(rs, 7)]; Ts = ii[WS(rs, 7)]; Tt = FMA(Tp, Tq, Tr * Ts); T19 = FNMS(Tr, Tq, Tp * Ts); Tw = ri[WS(rs, 8)]; Ty = ii[WS(rs, 8)]; Tz = FMA(Tv, Tw, Tx * Ty); T1b = FNMS(Tx, Tw, Tv * Ty); } Tu = To - Tt; TD = Tz - TC; TE = Tu + TD; T1v = T18 + T19; T1w = T1b + T1c; T1B = T1v + T1w; TY = To + Tt; TZ = Tz + TC; T10 = TY + TZ; T1a = T18 - T19; T1d = T1b - T1c; T1P = T1a + T1d; } { E T15, TW, T16, T1m, T1o, T1e, T1l, T1n, T17; T15 = KP559016994 * (TE - TV); TW = TE + TV; T16 = FNMS(KP250000000, TW, Tj); T1e = T1a - T1d; T1l = T1h - T1k; T1m = FMA(KP951056516, T1e, KP587785252 * T1l); T1o = FNMS(KP587785252, T1e, KP951056516 * T1l); ri[WS(rs, 5)] = Tj + TW; T1n = T16 - T15; ri[WS(rs, 7)] = T1n - T1o; ri[WS(rs, 3)] = T1n + T1o; T17 = T15 + T16; ri[WS(rs, 9)] = T17 - T1m; ri[WS(rs, 1)] = T17 + T1m; } { E T1R, T1T, T1U, T1Y, T20, T1W, T1X, T1Z, T1V; T1R = KP559016994 * (T1P - T1Q); T1T = T1P + T1Q; T1U = FNMS(KP250000000, T1T, T1S); T1W = Tu - TD; T1X = TL - TU; T1Y = FMA(KP951056516, T1W, KP587785252 * T1X); T20 = FNMS(KP587785252, T1W, KP951056516 * T1X); ii[WS(rs, 5)] = T1T + T1S; T1Z = T1U - T1R; ii[WS(rs, 3)] = T1Z - T20; ii[WS(rs, 7)] = T20 + T1Z; T1V = T1R + T1U; ii[WS(rs, 1)] = T1V - T1Y; ii[WS(rs, 9)] = T1Y + T1V; } { E T1q, T14, T1p, T1y, T1A, T1u, T1x, T1z, T1r; T1q = KP559016994 * (T10 - T13); T14 = T10 + T13; T1p = FNMS(KP250000000, T14, TX); T1u = T1s - T1t; T1x = T1v - T1w; T1y = FNMS(KP587785252, T1x, KP951056516 * T1u); T1A = FMA(KP951056516, T1x, KP587785252 * T1u); ri[0] = TX + T14; T1z = T1q + T1p; ri[WS(rs, 4)] = T1z - T1A; ri[WS(rs, 6)] = T1z + T1A; T1r = T1p - T1q; ri[WS(rs, 2)] = T1r - T1y; ri[WS(rs, 8)] = T1r + T1y; } { E T1L, T1D, T1K, T1J, T1N, T1H, T1I, T1O, T1M; T1L = KP559016994 * (T1B - T1C); T1D = T1B + T1C; T1K = FNMS(KP250000000, T1D, T1G); T1H = T11 - T12; T1I = TY - TZ; T1J = FNMS(KP587785252, T1I, KP951056516 * T1H); T1N = FMA(KP951056516, T1I, KP587785252 * T1H); ii[0] = T1D + T1G; T1O = T1L + T1K; ii[WS(rs, 4)] = T1N + T1O; ii[WS(rs, 6)] = T1O - T1N; T1M = T1K - T1L; ii[WS(rs, 2)] = T1J + T1M; ii[WS(rs, 8)] = T1M - T1J; } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_CEXP, 0, 9}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, {76, 42, 38, 0}, 0, 0, 0 }; void X(codelet_t2_10) (planner *p) { X(kdft_dit_register) (p, t2_10, &desc); } #endif