/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:19 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include dft/scalar/t.h */ /* * This function contains 196 FP additions, 134 FP multiplications, * (or, 104 additions, 42 multiplications, 92 fused multiply/add), * 90 stack variables, 3 constants, and 64 memory accesses */ #include "dft/scalar/t.h" static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { E T2, Tf, TM, TO, T3, T6, T5, Th, Tz, Ti, T7, TZ, TT, Tq, TW; E Tb, Tu, TP, TI, TF, TC, T1z, T1O, T1D, T1L, Tm, T1f, T1p, T1j, T1m; { E TN, TS, T4, Tp, Ta, Tt, Tl, Tg; T2 = W[0]; Tf = W[2]; Tg = T2 * Tf; TM = W[6]; TN = T2 * TM; TO = W[7]; TS = T2 * TO; T3 = W[4]; T4 = T2 * T3; Tp = Tf * T3; T6 = W[5]; Ta = T2 * T6; Tt = Tf * T6; T5 = W[1]; Th = W[3]; Tl = T2 * Th; Tz = FMA(T5, Th, Tg); Ti = FNMS(T5, Th, Tg); T7 = FMA(T5, T6, T4); TZ = FNMS(Th, T3, Tt); TT = FNMS(T5, TM, TS); Tq = FNMS(Th, T6, Tp); TW = FMA(Th, T6, Tp); Tb = FNMS(T5, T3, Ta); Tu = FMA(Th, T3, Tt); TP = FMA(T5, TO, TN); TI = FMA(T5, T3, Ta); TF = FNMS(T5, T6, T4); { E T1y, T1C, T1e, T1i; T1y = Tz * T3; T1C = Tz * T6; TC = FNMS(T5, Tf, Tl); T1z = FMA(TC, T6, T1y); T1O = FMA(TC, T3, T1C); T1D = FNMS(TC, T3, T1C); T1L = FNMS(TC, T6, T1y); T1e = Ti * T3; T1i = Ti * T6; Tm = FMA(T5, Tf, Tl); T1f = FMA(Tm, T6, T1e); T1p = FMA(Tm, T3, T1i); T1j = FNMS(Tm, T3, T1i); T1m = FNMS(Tm, T6, T1e); } } { E Te, T1U, T3A, T3L, T1G, T2D, T2A, T3h, T1R, T2B, T2I, T3i, Tx, T3M, T1Z; E T3w, TL, T26, T25, T37, T1d, T2o, T2l, T3c, T1s, T2m, T2t, T3d, T12, T28; E T2d, T38; { E T1, T3z, T8, T9, Tc, T3x, Td, T3y; T1 = ri[0]; T3z = ii[0]; T8 = ri[WS(rs, 8)]; T9 = T7 * T8; Tc = ii[WS(rs, 8)]; T3x = T7 * Tc; Td = FMA(Tb, Tc, T9); Te = T1 + Td; T1U = T1 - Td; T3y = FNMS(Tb, T8, T3x); T3A = T3y + T3z; T3L = T3z - T3y; } { E T1u, T1v, T1w, T2w, T1A, T1B, T1E, T2y; T1u = ri[WS(rs, 15)]; T1v = TM * T1u; T1w = ii[WS(rs, 15)]; T2w = TM * T1w; T1A = ri[WS(rs, 7)]; T1B = T1z * T1A; T1E = ii[WS(rs, 7)]; T2y = T1z * T1E; { E T1x, T1F, T2x, T2z; T1x = FMA(TO, T1w, T1v); T1F = FMA(T1D, T1E, T1B); T1G = T1x + T1F; T2D = T1x - T1F; T2x = FNMS(TO, T1u, T2w); T2z = FNMS(T1D, T1A, T2y); T2A = T2x - T2z; T3h = T2x + T2z; } } { E T1H, T1I, T1J, T2E, T1M, T1N, T1P, T2G; T1H = ri[WS(rs, 3)]; T1I = Tf * T1H; T1J = ii[WS(rs, 3)]; T2E = Tf * T1J; T1M = ri[WS(rs, 11)]; T1N = T1L * T1M; T1P = ii[WS(rs, 11)]; T2G = T1L * T1P; { E T1K, T1Q, T2F, T2H; T1K = FMA(Th, T1J, T1I); T1Q = FMA(T1O, T1P, T1N); T1R = T1K + T1Q; T2B = T1K - T1Q; T2F = FNMS(Th, T1H, T2E); T2H = FNMS(T1O, T1M, T2G); T2I = T2F - T2H; T3i = T2F + T2H; } } { E Tj, Tk, Tn, T1V, Tr, Ts, Tv, T1X; Tj = ri[WS(rs, 4)]; Tk = Ti * Tj; Tn = ii[WS(rs, 4)]; T1V = Ti * Tn; Tr = ri[WS(rs, 12)]; Ts = Tq * Tr; Tv = ii[WS(rs, 12)]; T1X = Tq * Tv; { E To, Tw, T1W, T1Y; To = FMA(Tm, Tn, Tk); Tw = FMA(Tu, Tv, Ts); Tx = To + Tw; T3M = To - Tw; T1W = FNMS(Tm, Tj, T1V); T1Y = FNMS(Tu, Tr, T1X); T1Z = T1W - T1Y; T3w = T1W + T1Y; } } { E TA, TB, TD, T21, TG, TH, TJ, T23; TA = ri[WS(rs, 2)]; TB = Tz * TA; TD = ii[WS(rs, 2)]; T21 = Tz * TD; TG = ri[WS(rs, 10)]; TH = TF * TG; TJ = ii[WS(rs, 10)]; T23 = TF * TJ; { E TE, TK, T22, T24; TE = FMA(TC, TD, TB); TK = FMA(TI, TJ, TH); TL = TE + TK; T26 = TE - TK; T22 = FNMS(TC, TA, T21); T24 = FNMS(TI, TG, T23); T25 = T22 - T24; T37 = T22 + T24; } } { E T15, T16, T17, T2h, T19, T1a, T1b, T2j; T15 = ri[WS(rs, 1)]; T16 = T2 * T15; T17 = ii[WS(rs, 1)]; T2h = T2 * T17; T19 = ri[WS(rs, 9)]; T1a = T3 * T19; T1b = ii[WS(rs, 9)]; T2j = T3 * T1b; { E T18, T1c, T2i, T2k; T18 = FMA(T5, T17, T16); T1c = FMA(T6, T1b, T1a); T1d = T18 + T1c; T2o = T18 - T1c; T2i = FNMS(T5, T15, T2h); T2k = FNMS(T6, T19, T2j); T2l = T2i - T2k; T3c = T2i + T2k; } } { E T1g, T1h, T1k, T2p, T1n, T1o, T1q, T2r; T1g = ri[WS(rs, 5)]; T1h = T1f * T1g; T1k = ii[WS(rs, 5)]; T2p = T1f * T1k; T1n = ri[WS(rs, 13)]; T1o = T1m * T1n; T1q = ii[WS(rs, 13)]; T2r = T1m * T1q; { E T1l, T1r, T2q, T2s; T1l = FMA(T1j, T1k, T1h); T1r = FMA(T1p, T1q, T1o); T1s = T1l + T1r; T2m = T1l - T1r; T2q = FNMS(T1j, T1g, T2p); T2s = FNMS(T1p, T1n, T2r); T2t = T2q - T2s; T3d = T2q + T2s; } } { E TQ, TR, TU, T29, TX, TY, T10, T2b; TQ = ri[WS(rs, 14)]; TR = TP * TQ; TU = ii[WS(rs, 14)]; T29 = TP * TU; TX = ri[WS(rs, 6)]; TY = TW * TX; T10 = ii[WS(rs, 6)]; T2b = TW * T10; { E TV, T11, T2a, T2c; TV = FMA(TT, TU, TR); T11 = FMA(TZ, T10, TY); T12 = TV + T11; T28 = TV - T11; T2a = FNMS(TT, TQ, T29); T2c = FNMS(TZ, TX, T2b); T2d = T2a - T2c; T38 = T2a + T2c; } } { E T14, T3q, T3C, T3E, T1T, T3D, T3t, T3u; { E Ty, T13, T3v, T3B; Ty = Te + Tx; T13 = TL + T12; T14 = Ty + T13; T3q = Ty - T13; T3v = T37 + T38; T3B = T3w + T3A; T3C = T3v + T3B; T3E = T3B - T3v; } { E T1t, T1S, T3r, T3s; T1t = T1d + T1s; T1S = T1G + T1R; T1T = T1t + T1S; T3D = T1S - T1t; T3r = T3c + T3d; T3s = T3h + T3i; T3t = T3r - T3s; T3u = T3r + T3s; } ri[WS(rs, 8)] = T14 - T1T; ii[WS(rs, 8)] = T3C - T3u; ri[0] = T14 + T1T; ii[0] = T3u + T3C; ri[WS(rs, 12)] = T3q - T3t; ii[WS(rs, 12)] = T3E - T3D; ri[WS(rs, 4)] = T3q + T3t; ii[WS(rs, 4)] = T3D + T3E; } { E T3a, T3m, T3H, T3J, T3f, T3n, T3k, T3o; { E T36, T39, T3F, T3G; T36 = Te - Tx; T39 = T37 - T38; T3a = T36 + T39; T3m = T36 - T39; T3F = T12 - TL; T3G = T3A - T3w; T3H = T3F + T3G; T3J = T3G - T3F; } { E T3b, T3e, T3g, T3j; T3b = T1d - T1s; T3e = T3c - T3d; T3f = T3b + T3e; T3n = T3e - T3b; T3g = T1G - T1R; T3j = T3h - T3i; T3k = T3g - T3j; T3o = T3g + T3j; } { E T3l, T3I, T3p, T3K; T3l = T3f + T3k; ri[WS(rs, 10)] = FNMS(KP707106781, T3l, T3a); ri[WS(rs, 2)] = FMA(KP707106781, T3l, T3a); T3I = T3n + T3o; ii[WS(rs, 2)] = FMA(KP707106781, T3I, T3H); ii[WS(rs, 10)] = FNMS(KP707106781, T3I, T3H); T3p = T3n - T3o; ri[WS(rs, 14)] = FNMS(KP707106781, T3p, T3m); ri[WS(rs, 6)] = FMA(KP707106781, T3p, T3m); T3K = T3k - T3f; ii[WS(rs, 6)] = FMA(KP707106781, T3K, T3J); ii[WS(rs, 14)] = FNMS(KP707106781, T3K, T3J); } } { E T20, T3N, T3T, T2Q, T2f, T3O, T30, T34, T2T, T3U, T2v, T2N, T2X, T33, T2K; E T2O; { E T27, T2e, T2n, T2u; T20 = T1U - T1Z; T3N = T3L - T3M; T3T = T3M + T3L; T2Q = T1U + T1Z; T27 = T25 - T26; T2e = T28 + T2d; T2f = T27 - T2e; T3O = T27 + T2e; { E T2Y, T2Z, T2R, T2S; T2Y = T2D + T2I; T2Z = T2A - T2B; T30 = FNMS(KP414213562, T2Z, T2Y); T34 = FMA(KP414213562, T2Y, T2Z); T2R = T26 + T25; T2S = T28 - T2d; T2T = T2R + T2S; T3U = T2S - T2R; } T2n = T2l + T2m; T2u = T2o - T2t; T2v = FMA(KP414213562, T2u, T2n); T2N = FNMS(KP414213562, T2n, T2u); { E T2V, T2W, T2C, T2J; T2V = T2o + T2t; T2W = T2l - T2m; T2X = FMA(KP414213562, T2W, T2V); T33 = FNMS(KP414213562, T2V, T2W); T2C = T2A + T2B; T2J = T2D - T2I; T2K = FNMS(KP414213562, T2J, T2C); T2O = FMA(KP414213562, T2C, T2J); } } { E T2g, T2L, T3V, T3W; T2g = FMA(KP707106781, T2f, T20); T2L = T2v - T2K; ri[WS(rs, 11)] = FNMS(KP923879532, T2L, T2g); ri[WS(rs, 3)] = FMA(KP923879532, T2L, T2g); T3V = FMA(KP707106781, T3U, T3T); T3W = T2O - T2N; ii[WS(rs, 3)] = FMA(KP923879532, T3W, T3V); ii[WS(rs, 11)] = FNMS(KP923879532, T3W, T3V); } { E T2M, T2P, T3X, T3Y; T2M = FNMS(KP707106781, T2f, T20); T2P = T2N + T2O; ri[WS(rs, 7)] = FNMS(KP923879532, T2P, T2M); ri[WS(rs, 15)] = FMA(KP923879532, T2P, T2M); T3X = FNMS(KP707106781, T3U, T3T); T3Y = T2v + T2K; ii[WS(rs, 7)] = FNMS(KP923879532, T3Y, T3X); ii[WS(rs, 15)] = FMA(KP923879532, T3Y, T3X); } { E T2U, T31, T3P, T3Q; T2U = FMA(KP707106781, T2T, T2Q); T31 = T2X + T30; ri[WS(rs, 9)] = FNMS(KP923879532, T31, T2U); ri[WS(rs, 1)] = FMA(KP923879532, T31, T2U); T3P = FMA(KP707106781, T3O, T3N); T3Q = T33 + T34; ii[WS(rs, 1)] = FMA(KP923879532, T3Q, T3P); ii[WS(rs, 9)] = FNMS(KP923879532, T3Q, T3P); } { E T32, T35, T3R, T3S; T32 = FNMS(KP707106781, T2T, T2Q); T35 = T33 - T34; ri[WS(rs, 13)] = FNMS(KP923879532, T35, T32); ri[WS(rs, 5)] = FMA(KP923879532, T35, T32); T3R = FNMS(KP707106781, T3O, T3N); T3S = T30 - T2X; ii[WS(rs, 5)] = FMA(KP923879532, T3S, T3R); ii[WS(rs, 13)] = FNMS(KP923879532, T3S, T3R); } } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_CEXP, 0, 9}, {TW_CEXP, 0, 15}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {104, 42, 92, 0}, 0, 0, 0 }; void X(codelet_t2_16) (planner *p) { X(kdft_dit_register) (p, t2_16, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include dft/scalar/t.h */ /* * This function contains 196 FP additions, 108 FP multiplications, * (or, 156 additions, 68 multiplications, 40 fused multiply/add), * 82 stack variables, 3 constants, and 64 memory accesses */ #include "dft/scalar/t.h" static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { E T2, T5, Tg, Ti, Tk, To, TE, TC, T6, T3, T8, TW, TJ, Tt, TU; E Tc, Tx, TH, TN, TO, TP, TR, T1f, T1k, T1b, T1i, T1y, T1H, T1u, T1F; { E T7, Tv, Ta, Ts, T4, Tw, Tb, Tr; { E Th, Tn, Tj, Tm; T2 = W[0]; T5 = W[1]; Tg = W[2]; Ti = W[3]; Th = T2 * Tg; Tn = T5 * Tg; Tj = T5 * Ti; Tm = T2 * Ti; Tk = Th - Tj; To = Tm + Tn; TE = Tm - Tn; TC = Th + Tj; T6 = W[5]; T7 = T5 * T6; Tv = Tg * T6; Ta = T2 * T6; Ts = Ti * T6; T3 = W[4]; T4 = T2 * T3; Tw = Ti * T3; Tb = T5 * T3; Tr = Tg * T3; } T8 = T4 + T7; TW = Tv - Tw; TJ = Ta + Tb; Tt = Tr - Ts; TU = Tr + Ts; Tc = Ta - Tb; Tx = Tv + Tw; TH = T4 - T7; TN = W[6]; TO = W[7]; TP = FMA(T2, TN, T5 * TO); TR = FNMS(T5, TN, T2 * TO); { E T1d, T1e, T19, T1a; T1d = Tk * T6; T1e = To * T3; T1f = T1d - T1e; T1k = T1d + T1e; T19 = Tk * T3; T1a = To * T6; T1b = T19 + T1a; T1i = T19 - T1a; } { E T1w, T1x, T1s, T1t; T1w = TC * T6; T1x = TE * T3; T1y = T1w - T1x; T1H = T1w + T1x; T1s = TC * T3; T1t = TE * T6; T1u = T1s + T1t; T1F = T1s - T1t; } } { E Tf, T3r, T1N, T3e, TA, T3s, T1Q, T3b, TM, T2M, T1W, T2w, TZ, T2N, T21; E T2x, T1B, T1K, T2V, T2W, T2X, T2Y, T2j, T2D, T2o, T2E, T18, T1n, T2Q, T2R; E T2S, T2T, T28, T2A, T2d, T2B; { E T1, T3d, Te, T3c, T9, Td; T1 = ri[0]; T3d = ii[0]; T9 = ri[WS(rs, 8)]; Td = ii[WS(rs, 8)]; Te = FMA(T8, T9, Tc * Td); T3c = FNMS(Tc, T9, T8 * Td); Tf = T1 + Te; T3r = T3d - T3c; T1N = T1 - Te; T3e = T3c + T3d; } { E Tq, T1O, Tz, T1P; { E Tl, Tp, Tu, Ty; Tl = ri[WS(rs, 4)]; Tp = ii[WS(rs, 4)]; Tq = FMA(Tk, Tl, To * Tp); T1O = FNMS(To, Tl, Tk * Tp); Tu = ri[WS(rs, 12)]; Ty = ii[WS(rs, 12)]; Tz = FMA(Tt, Tu, Tx * Ty); T1P = FNMS(Tx, Tu, Tt * Ty); } TA = Tq + Tz; T3s = Tq - Tz; T1Q = T1O - T1P; T3b = T1O + T1P; } { E TG, T1S, TL, T1T, T1U, T1V; { E TD, TF, TI, TK; TD = ri[WS(rs, 2)]; TF = ii[WS(rs, 2)]; TG = FMA(TC, TD, TE * TF); T1S = FNMS(TE, TD, TC * TF); TI = ri[WS(rs, 10)]; TK = ii[WS(rs, 10)]; TL = FMA(TH, TI, TJ * TK); T1T = FNMS(TJ, TI, TH * TK); } TM = TG + TL; T2M = T1S + T1T; T1U = T1S - T1T; T1V = TG - TL; T1W = T1U - T1V; T2w = T1V + T1U; } { E TT, T1Y, TY, T1Z, T1X, T20; { E TQ, TS, TV, TX; TQ = ri[WS(rs, 14)]; TS = ii[WS(rs, 14)]; TT = FMA(TP, TQ, TR * TS); T1Y = FNMS(TR, TQ, TP * TS); TV = ri[WS(rs, 6)]; TX = ii[WS(rs, 6)]; TY = FMA(TU, TV, TW * TX); T1Z = FNMS(TW, TV, TU * TX); } TZ = TT + TY; T2N = T1Y + T1Z; T1X = TT - TY; T20 = T1Y - T1Z; T21 = T1X + T20; T2x = T1X - T20; } { E T1r, T2k, T1J, T2h, T1A, T2l, T1E, T2g; { E T1p, T1q, T1G, T1I; T1p = ri[WS(rs, 15)]; T1q = ii[WS(rs, 15)]; T1r = FMA(TN, T1p, TO * T1q); T2k = FNMS(TO, T1p, TN * T1q); T1G = ri[WS(rs, 11)]; T1I = ii[WS(rs, 11)]; T1J = FMA(T1F, T1G, T1H * T1I); T2h = FNMS(T1H, T1G, T1F * T1I); } { E T1v, T1z, T1C, T1D; T1v = ri[WS(rs, 7)]; T1z = ii[WS(rs, 7)]; T1A = FMA(T1u, T1v, T1y * T1z); T2l = FNMS(T1y, T1v, T1u * T1z); T1C = ri[WS(rs, 3)]; T1D = ii[WS(rs, 3)]; T1E = FMA(Tg, T1C, Ti * T1D); T2g = FNMS(Ti, T1C, Tg * T1D); } T1B = T1r + T1A; T1K = T1E + T1J; T2V = T1B - T1K; T2W = T2k + T2l; T2X = T2g + T2h; T2Y = T2W - T2X; { E T2f, T2i, T2m, T2n; T2f = T1r - T1A; T2i = T2g - T2h; T2j = T2f - T2i; T2D = T2f + T2i; T2m = T2k - T2l; T2n = T1E - T1J; T2o = T2m + T2n; T2E = T2m - T2n; } } { E T14, T24, T1m, T2b, T17, T25, T1h, T2a; { E T12, T13, T1j, T1l; T12 = ri[WS(rs, 1)]; T13 = ii[WS(rs, 1)]; T14 = FMA(T2, T12, T5 * T13); T24 = FNMS(T5, T12, T2 * T13); T1j = ri[WS(rs, 13)]; T1l = ii[WS(rs, 13)]; T1m = FMA(T1i, T1j, T1k * T1l); T2b = FNMS(T1k, T1j, T1i * T1l); } { E T15, T16, T1c, T1g; T15 = ri[WS(rs, 9)]; T16 = ii[WS(rs, 9)]; T17 = FMA(T3, T15, T6 * T16); T25 = FNMS(T6, T15, T3 * T16); T1c = ri[WS(rs, 5)]; T1g = ii[WS(rs, 5)]; T1h = FMA(T1b, T1c, T1f * T1g); T2a = FNMS(T1f, T1c, T1b * T1g); } T18 = T14 + T17; T1n = T1h + T1m; T2Q = T18 - T1n; T2R = T24 + T25; T2S = T2a + T2b; T2T = T2R - T2S; { E T26, T27, T29, T2c; T26 = T24 - T25; T27 = T1h - T1m; T28 = T26 + T27; T2A = T26 - T27; T29 = T14 - T17; T2c = T2a - T2b; T2d = T29 - T2c; T2B = T29 + T2c; } } { E T23, T2r, T3A, T3C, T2q, T3B, T2u, T3x; { E T1R, T22, T3y, T3z; T1R = T1N - T1Q; T22 = KP707106781 * (T1W - T21); T23 = T1R + T22; T2r = T1R - T22; T3y = KP707106781 * (T2x - T2w); T3z = T3s + T3r; T3A = T3y + T3z; T3C = T3z - T3y; } { E T2e, T2p, T2s, T2t; T2e = FMA(KP923879532, T28, KP382683432 * T2d); T2p = FNMS(KP923879532, T2o, KP382683432 * T2j); T2q = T2e + T2p; T3B = T2p - T2e; T2s = FNMS(KP923879532, T2d, KP382683432 * T28); T2t = FMA(KP382683432, T2o, KP923879532 * T2j); T2u = T2s - T2t; T3x = T2s + T2t; } ri[WS(rs, 11)] = T23 - T2q; ii[WS(rs, 11)] = T3A - T3x; ri[WS(rs, 3)] = T23 + T2q; ii[WS(rs, 3)] = T3x + T3A; ri[WS(rs, 15)] = T2r - T2u; ii[WS(rs, 15)] = T3C - T3B; ri[WS(rs, 7)] = T2r + T2u; ii[WS(rs, 7)] = T3B + T3C; } { E T2P, T31, T3m, T3o, T30, T3n, T34, T3j; { E T2L, T2O, T3k, T3l; T2L = Tf - TA; T2O = T2M - T2N; T2P = T2L + T2O; T31 = T2L - T2O; T3k = TZ - TM; T3l = T3e - T3b; T3m = T3k + T3l; T3o = T3l - T3k; } { E T2U, T2Z, T32, T33; T2U = T2Q + T2T; T2Z = T2V - T2Y; T30 = KP707106781 * (T2U + T2Z); T3n = KP707106781 * (T2Z - T2U); T32 = T2T - T2Q; T33 = T2V + T2Y; T34 = KP707106781 * (T32 - T33); T3j = KP707106781 * (T32 + T33); } ri[WS(rs, 10)] = T2P - T30; ii[WS(rs, 10)] = T3m - T3j; ri[WS(rs, 2)] = T2P + T30; ii[WS(rs, 2)] = T3j + T3m; ri[WS(rs, 14)] = T31 - T34; ii[WS(rs, 14)] = T3o - T3n; ri[WS(rs, 6)] = T31 + T34; ii[WS(rs, 6)] = T3n + T3o; } { E T2z, T2H, T3u, T3w, T2G, T3v, T2K, T3p; { E T2v, T2y, T3q, T3t; T2v = T1N + T1Q; T2y = KP707106781 * (T2w + T2x); T2z = T2v + T2y; T2H = T2v - T2y; T3q = KP707106781 * (T1W + T21); T3t = T3r - T3s; T3u = T3q + T3t; T3w = T3t - T3q; } { E T2C, T2F, T2I, T2J; T2C = FMA(KP382683432, T2A, KP923879532 * T2B); T2F = FNMS(KP382683432, T2E, KP923879532 * T2D); T2G = T2C + T2F; T3v = T2F - T2C; T2I = FNMS(KP382683432, T2B, KP923879532 * T2A); T2J = FMA(KP923879532, T2E, KP382683432 * T2D); T2K = T2I - T2J; T3p = T2I + T2J; } ri[WS(rs, 9)] = T2z - T2G; ii[WS(rs, 9)] = T3u - T3p; ri[WS(rs, 1)] = T2z + T2G; ii[WS(rs, 1)] = T3p + T3u; ri[WS(rs, 13)] = T2H - T2K; ii[WS(rs, 13)] = T3w - T3v; ri[WS(rs, 5)] = T2H + T2K; ii[WS(rs, 5)] = T3v + T3w; } { E T11, T35, T3g, T3i, T1M, T3h, T38, T39; { E TB, T10, T3a, T3f; TB = Tf + TA; T10 = TM + TZ; T11 = TB + T10; T35 = TB - T10; T3a = T2M + T2N; T3f = T3b + T3e; T3g = T3a + T3f; T3i = T3f - T3a; } { E T1o, T1L, T36, T37; T1o = T18 + T1n; T1L = T1B + T1K; T1M = T1o + T1L; T3h = T1L - T1o; T36 = T2R + T2S; T37 = T2W + T2X; T38 = T36 - T37; T39 = T36 + T37; } ri[WS(rs, 8)] = T11 - T1M; ii[WS(rs, 8)] = T3g - T39; ri[0] = T11 + T1M; ii[0] = T39 + T3g; ri[WS(rs, 12)] = T35 - T38; ii[WS(rs, 12)] = T3i - T3h; ri[WS(rs, 4)] = T35 + T38; ii[WS(rs, 4)] = T3h + T3i; } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_CEXP, 0, 9}, {TW_CEXP, 0, 15}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {156, 68, 40, 0}, 0, 0, 0 }; void X(codelet_t2_16) (planner *p) { X(kdft_dit_register) (p, t2_16, &desc); } #endif