/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:26 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */ /* * This function contains 276 FP additions, 198 FP multiplications, * (or, 136 additions, 58 multiplications, 140 fused multiply/add), * 95 stack variables, 4 constants, and 80 memory accesses */ #include "dft/scalar/t.h" static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT m; for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { E T2, Th, Tf, T6, T5, Ti, Tl, T1n, T3, Tt, Tv, T7, T17, T1L, T24; E Tb, T13, T1P, T21, T1b, T1D, T1A, T1H, T1f, TA, Tw, Tq, Tm, TK, T1S; E TO, T1p, T1q, T1u, T2n, T2k, T2h, T2d; { E Tk, Ta, T1e, T4, T1a, Tj, T12, T1G, T16, T1K, Tg, Tz; T2 = W[0]; Th = W[3]; Tf = W[2]; Tg = T2 * Tf; Tk = T2 * Th; T6 = W[5]; Ta = T2 * T6; T1e = Tf * T6; T5 = W[1]; Ti = FNMS(T5, Th, Tg); Tl = FMA(T5, Tf, Tk); T1n = FMA(T5, Th, Tg); T3 = W[4]; T4 = T2 * T3; T1a = Tf * T3; Tj = Ti * T3; Tt = W[6]; T12 = Tf * Tt; T1G = T2 * Tt; Tv = W[7]; T16 = Tf * Tv; T1K = T2 * Tv; T7 = FNMS(T5, T6, T4); T17 = FNMS(Th, Tt, T16); T1L = FNMS(T5, Tt, T1K); T24 = FMA(Th, T3, T1e); Tb = FMA(T5, T3, Ta); T13 = FMA(Th, Tv, T12); T1P = FNMS(Tl, T6, Tj); T21 = FNMS(Th, T6, T1a); T1b = FMA(Th, T6, T1a); T1D = FNMS(T5, T3, Ta); T1A = FMA(T5, T6, T4); T1H = FMA(T5, Tv, T1G); T1f = FNMS(Th, T3, T1e); Tz = Ti * Tv; TA = FNMS(Tl, Tt, Tz); { E Tu, Tp, TJ, TN; Tu = Ti * Tt; Tw = FMA(Tl, Tv, Tu); Tp = Ti * T6; Tq = FNMS(Tl, T3, Tp); Tm = FMA(Tl, T6, Tj); TJ = Tm * Tt; TN = Tm * Tv; TK = FMA(Tq, Tv, TJ); T1S = FMA(Tl, T3, Tp); TO = FNMS(Tq, Tt, TN); { E T1o, T2g, T1t, T2c; T1o = T1n * T3; T2g = T1n * Tv; T1t = T1n * T6; T2c = T1n * Tt; T1p = FNMS(T5, Tf, Tk); T1q = FNMS(T1p, T6, T1o); T1u = FMA(T1p, T3, T1t); T2n = FNMS(T1p, T3, T1t); T2k = FMA(T1p, T6, T1o); T2h = FNMS(T1p, Tt, T2g); T2d = FMA(T1p, Tv, T2c); } } } { E Te, T2C, T4L, T57, TD, T58, T2H, T4H, T11, T2v, T4k, T4v, T2P, T3P, T3C; E T3Z, T2r, T2z, T4g, T4z, T3b, T3T, T3u, T43, T20, T2y, T4d, T4y, T34, T3S; E T3n, T42, T1y, T2w, T4n, T4w, T2W, T3Q, T3J, T40; { E T1, T4K, T8, T9, Tc, T4I, Td, T4J; T1 = ri[0]; T4K = ii[0]; T8 = ri[WS(rs, 10)]; T9 = T7 * T8; Tc = ii[WS(rs, 10)]; T4I = T7 * Tc; Td = FMA(Tb, Tc, T9); Te = T1 + Td; T2C = T1 - Td; T4J = FNMS(Tb, T8, T4I); T4L = T4J + T4K; T57 = T4K - T4J; } { E Tn, To, Tr, T2D, Tx, Ty, TB, T2F; Tn = ri[WS(rs, 5)]; To = Tm * Tn; Tr = ii[WS(rs, 5)]; T2D = Tm * Tr; Tx = ri[WS(rs, 15)]; Ty = Tw * Tx; TB = ii[WS(rs, 15)]; T2F = Tw * TB; { E Ts, TC, T2E, T2G; Ts = FMA(Tq, Tr, To); TC = FMA(TA, TB, Ty); TD = Ts + TC; T58 = Ts - TC; T2E = FNMS(Tq, Tn, T2D); T2G = FNMS(TA, Tx, T2F); T2H = T2E - T2G; T4H = T2E + T2G; } } { E TI, T3x, TZ, T2N, TQ, T3z, TV, T2L; { E TF, TG, TH, T3w; TF = ri[WS(rs, 4)]; TG = Ti * TF; TH = ii[WS(rs, 4)]; T3w = Ti * TH; TI = FMA(Tl, TH, TG); T3x = FNMS(Tl, TF, T3w); } { E TW, TX, TY, T2M; TW = ri[WS(rs, 19)]; TX = Tt * TW; TY = ii[WS(rs, 19)]; T2M = Tt * TY; TZ = FMA(Tv, TY, TX); T2N = FNMS(Tv, TW, T2M); } { E TL, TM, TP, T3y; TL = ri[WS(rs, 14)]; TM = TK * TL; TP = ii[WS(rs, 14)]; T3y = TK * TP; TQ = FMA(TO, TP, TM); T3z = FNMS(TO, TL, T3y); } { E TS, TT, TU, T2K; TS = ri[WS(rs, 9)]; TT = T3 * TS; TU = ii[WS(rs, 9)]; T2K = T3 * TU; TV = FMA(T6, TU, TT); T2L = FNMS(T6, TS, T2K); } { E TR, T10, T4i, T4j; TR = TI + TQ; T10 = TV + TZ; T11 = TR - T10; T2v = TR + T10; T4i = T3x + T3z; T4j = T2L + T2N; T4k = T4i - T4j; T4v = T4i + T4j; } { E T2J, T2O, T3A, T3B; T2J = TI - TQ; T2O = T2L - T2N; T2P = T2J - T2O; T3P = T2J + T2O; T3A = T3x - T3z; T3B = TV - TZ; T3C = T3A + T3B; T3Z = T3A - T3B; } } { E T26, T3p, T2p, T39, T2a, T3r, T2j, T37; { E T22, T23, T25, T3o; T22 = ri[WS(rs, 12)]; T23 = T21 * T22; T25 = ii[WS(rs, 12)]; T3o = T21 * T25; T26 = FMA(T24, T25, T23); T3p = FNMS(T24, T22, T3o); } { E T2l, T2m, T2o, T38; T2l = ri[WS(rs, 7)]; T2m = T2k * T2l; T2o = ii[WS(rs, 7)]; T38 = T2k * T2o; T2p = FMA(T2n, T2o, T2m); T39 = FNMS(T2n, T2l, T38); } { E T27, T28, T29, T3q; T27 = ri[WS(rs, 2)]; T28 = T1n * T27; T29 = ii[WS(rs, 2)]; T3q = T1n * T29; T2a = FMA(T1p, T29, T28); T3r = FNMS(T1p, T27, T3q); } { E T2e, T2f, T2i, T36; T2e = ri[WS(rs, 17)]; T2f = T2d * T2e; T2i = ii[WS(rs, 17)]; T36 = T2d * T2i; T2j = FMA(T2h, T2i, T2f); T37 = FNMS(T2h, T2e, T36); } { E T2b, T2q, T4e, T4f; T2b = T26 + T2a; T2q = T2j + T2p; T2r = T2b - T2q; T2z = T2b + T2q; T4e = T3p + T3r; T4f = T37 + T39; T4g = T4e - T4f; T4z = T4e + T4f; } { E T35, T3a, T3s, T3t; T35 = T26 - T2a; T3a = T37 - T39; T3b = T35 - T3a; T3T = T35 + T3a; T3s = T3p - T3r; T3t = T2j - T2p; T3u = T3s + T3t; T43 = T3s - T3t; } } { E T1F, T3i, T1Y, T32, T1N, T3k, T1U, T30; { E T1B, T1C, T1E, T3h; T1B = ri[WS(rs, 8)]; T1C = T1A * T1B; T1E = ii[WS(rs, 8)]; T3h = T1A * T1E; T1F = FMA(T1D, T1E, T1C); T3i = FNMS(T1D, T1B, T3h); } { E T1V, T1W, T1X, T31; T1V = ri[WS(rs, 3)]; T1W = Tf * T1V; T1X = ii[WS(rs, 3)]; T31 = Tf * T1X; T1Y = FMA(Th, T1X, T1W); T32 = FNMS(Th, T1V, T31); } { E T1I, T1J, T1M, T3j; T1I = ri[WS(rs, 18)]; T1J = T1H * T1I; T1M = ii[WS(rs, 18)]; T3j = T1H * T1M; T1N = FMA(T1L, T1M, T1J); T3k = FNMS(T1L, T1I, T3j); } { E T1Q, T1R, T1T, T2Z; T1Q = ri[WS(rs, 13)]; T1R = T1P * T1Q; T1T = ii[WS(rs, 13)]; T2Z = T1P * T1T; T1U = FMA(T1S, T1T, T1R); T30 = FNMS(T1S, T1Q, T2Z); } { E T1O, T1Z, T4b, T4c; T1O = T1F + T1N; T1Z = T1U + T1Y; T20 = T1O - T1Z; T2y = T1O + T1Z; T4b = T3i + T3k; T4c = T30 + T32; T4d = T4b - T4c; T4y = T4b + T4c; } { E T2Y, T33, T3l, T3m; T2Y = T1F - T1N; T33 = T30 - T32; T34 = T2Y - T33; T3S = T2Y + T33; T3l = T3i - T3k; T3m = T1U - T1Y; T3n = T3l + T3m; T42 = T3l - T3m; } } { E T19, T3E, T1w, T2U, T1h, T3G, T1m, T2S; { E T14, T15, T18, T3D; T14 = ri[WS(rs, 16)]; T15 = T13 * T14; T18 = ii[WS(rs, 16)]; T3D = T13 * T18; T19 = FMA(T17, T18, T15); T3E = FNMS(T17, T14, T3D); } { E T1r, T1s, T1v, T2T; T1r = ri[WS(rs, 11)]; T1s = T1q * T1r; T1v = ii[WS(rs, 11)]; T2T = T1q * T1v; T1w = FMA(T1u, T1v, T1s); T2U = FNMS(T1u, T1r, T2T); } { E T1c, T1d, T1g, T3F; T1c = ri[WS(rs, 6)]; T1d = T1b * T1c; T1g = ii[WS(rs, 6)]; T3F = T1b * T1g; T1h = FMA(T1f, T1g, T1d); T3G = FNMS(T1f, T1c, T3F); } { E T1j, T1k, T1l, T2R; T1j = ri[WS(rs, 1)]; T1k = T2 * T1j; T1l = ii[WS(rs, 1)]; T2R = T2 * T1l; T1m = FMA(T5, T1l, T1k); T2S = FNMS(T5, T1j, T2R); } { E T1i, T1x, T4l, T4m; T1i = T19 + T1h; T1x = T1m + T1w; T1y = T1i - T1x; T2w = T1i + T1x; T4l = T3E + T3G; T4m = T2S + T2U; T4n = T4l - T4m; T4w = T4l + T4m; } { E T2Q, T2V, T3H, T3I; T2Q = T19 - T1h; T2V = T2S - T2U; T2W = T2Q - T2V; T3Q = T2Q + T2V; T3H = T3E - T3G; T3I = T1m - T1w; T3J = T3H + T3I; T40 = T3H - T3I; } } { E T4p, T4r, TE, T2t, T48, T49, T4q, T4a; { E T4h, T4o, T1z, T2s; T4h = T4d - T4g; T4o = T4k - T4n; T4p = FNMS(KP618033988, T4o, T4h); T4r = FMA(KP618033988, T4h, T4o); TE = Te - TD; T1z = T11 + T1y; T2s = T20 + T2r; T2t = T1z + T2s; T48 = FNMS(KP250000000, T2t, TE); T49 = T1z - T2s; } ri[WS(rs, 10)] = TE + T2t; T4q = FMA(KP559016994, T49, T48); ri[WS(rs, 14)] = FNMS(KP951056516, T4r, T4q); ri[WS(rs, 6)] = FMA(KP951056516, T4r, T4q); T4a = FNMS(KP559016994, T49, T48); ri[WS(rs, 2)] = FNMS(KP951056516, T4p, T4a); ri[WS(rs, 18)] = FMA(KP951056516, T4p, T4a); } { E T54, T56, T4V, T4Y, T4Z, T50, T55, T51; { E T52, T53, T4W, T4X; T52 = T20 - T2r; T53 = T11 - T1y; T54 = FNMS(KP618033988, T53, T52); T56 = FMA(KP618033988, T52, T53); T4V = T4L - T4H; T4W = T4k + T4n; T4X = T4d + T4g; T4Y = T4W + T4X; T4Z = FNMS(KP250000000, T4Y, T4V); T50 = T4W - T4X; } ii[WS(rs, 10)] = T4Y + T4V; T55 = FMA(KP559016994, T50, T4Z); ii[WS(rs, 6)] = FNMS(KP951056516, T56, T55); ii[WS(rs, 14)] = FMA(KP951056516, T56, T55); T51 = FNMS(KP559016994, T50, T4Z); ii[WS(rs, 2)] = FMA(KP951056516, T54, T51); ii[WS(rs, 18)] = FNMS(KP951056516, T54, T51); } { E T4B, T4D, T2u, T2B, T4s, T4t, T4C, T4u; { E T4x, T4A, T2x, T2A; T4x = T4v - T4w; T4A = T4y - T4z; T4B = FMA(KP618033988, T4A, T4x); T4D = FNMS(KP618033988, T4x, T4A); T2u = Te + TD; T2x = T2v + T2w; T2A = T2y + T2z; T2B = T2x + T2A; T4s = FNMS(KP250000000, T2B, T2u); T4t = T2x - T2A; } ri[0] = T2u + T2B; T4C = FNMS(KP559016994, T4t, T4s); ri[WS(rs, 12)] = FNMS(KP951056516, T4D, T4C); ri[WS(rs, 8)] = FMA(KP951056516, T4D, T4C); T4u = FMA(KP559016994, T4t, T4s); ri[WS(rs, 4)] = FNMS(KP951056516, T4B, T4u); ri[WS(rs, 16)] = FMA(KP951056516, T4B, T4u); } { E T4S, T4U, T4M, T4G, T4N, T4O, T4T, T4P; { E T4Q, T4R, T4E, T4F; T4Q = T2v - T2w; T4R = T2y - T2z; T4S = FMA(KP618033988, T4R, T4Q); T4U = FNMS(KP618033988, T4Q, T4R); T4M = T4H + T4L; T4E = T4v + T4w; T4F = T4y + T4z; T4G = T4E + T4F; T4N = FNMS(KP250000000, T4G, T4M); T4O = T4E - T4F; } ii[0] = T4G + T4M; T4T = FNMS(KP559016994, T4O, T4N); ii[WS(rs, 8)] = FNMS(KP951056516, T4U, T4T); ii[WS(rs, 12)] = FMA(KP951056516, T4U, T4T); T4P = FMA(KP559016994, T4O, T4N); ii[WS(rs, 4)] = FMA(KP951056516, T4S, T4P); ii[WS(rs, 16)] = FNMS(KP951056516, T4S, T4P); } { E T3L, T3N, T2I, T3d, T3e, T3f, T3M, T3g; { E T3v, T3K, T2X, T3c; T3v = T3n - T3u; T3K = T3C - T3J; T3L = FNMS(KP618033988, T3K, T3v); T3N = FMA(KP618033988, T3v, T3K); T2I = T2C - T2H; T2X = T2P + T2W; T3c = T34 + T3b; T3d = T2X + T3c; T3e = FNMS(KP250000000, T3d, T2I); T3f = T2X - T3c; } ri[WS(rs, 15)] = T2I + T3d; T3M = FMA(KP559016994, T3f, T3e); ri[WS(rs, 11)] = FMA(KP951056516, T3N, T3M); ri[WS(rs, 19)] = FNMS(KP951056516, T3N, T3M); T3g = FNMS(KP559016994, T3f, T3e); ri[WS(rs, 3)] = FMA(KP951056516, T3L, T3g); ri[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g); } { E T5u, T5w, T5l, T5o, T5p, T5q, T5v, T5r; { E T5s, T5t, T5m, T5n; T5s = T34 - T3b; T5t = T2P - T2W; T5u = FNMS(KP618033988, T5t, T5s); T5w = FMA(KP618033988, T5s, T5t); T5l = T58 + T57; T5m = T3C + T3J; T5n = T3n + T3u; T5o = T5m + T5n; T5p = FNMS(KP250000000, T5o, T5l); T5q = T5m - T5n; } ii[WS(rs, 15)] = T5o + T5l; T5v = FMA(KP559016994, T5q, T5p); ii[WS(rs, 11)] = FNMS(KP951056516, T5w, T5v); ii[WS(rs, 19)] = FMA(KP951056516, T5w, T5v); T5r = FNMS(KP559016994, T5q, T5p); ii[WS(rs, 3)] = FNMS(KP951056516, T5u, T5r); ii[WS(rs, 7)] = FMA(KP951056516, T5u, T5r); } { E T45, T47, T3O, T3V, T3W, T3X, T46, T3Y; { E T41, T44, T3R, T3U; T41 = T3Z - T40; T44 = T42 - T43; T45 = FMA(KP618033988, T44, T41); T47 = FNMS(KP618033988, T41, T44); T3O = T2C + T2H; T3R = T3P + T3Q; T3U = T3S + T3T; T3V = T3R + T3U; T3W = FNMS(KP250000000, T3V, T3O); T3X = T3R - T3U; } ri[WS(rs, 5)] = T3O + T3V; T46 = FNMS(KP559016994, T3X, T3W); ri[WS(rs, 13)] = FMA(KP951056516, T47, T46); ri[WS(rs, 17)] = FNMS(KP951056516, T47, T46); T3Y = FMA(KP559016994, T3X, T3W); ri[WS(rs, 1)] = FMA(KP951056516, T45, T3Y); ri[WS(rs, 9)] = FNMS(KP951056516, T45, T3Y); } { E T5i, T5k, T59, T5c, T5d, T5e, T5j, T5f; { E T5g, T5h, T5a, T5b; T5g = T3P - T3Q; T5h = T3S - T3T; T5i = FMA(KP618033988, T5h, T5g); T5k = FNMS(KP618033988, T5g, T5h); T59 = T57 - T58; T5a = T3Z + T40; T5b = T42 + T43; T5c = T5a + T5b; T5d = FNMS(KP250000000, T5c, T59); T5e = T5a - T5b; } ii[WS(rs, 5)] = T5c + T59; T5j = FNMS(KP559016994, T5e, T5d); ii[WS(rs, 13)] = FNMS(KP951056516, T5k, T5j); ii[WS(rs, 17)] = FMA(KP951056516, T5k, T5j); T5f = FMA(KP559016994, T5e, T5d); ii[WS(rs, 1)] = FNMS(KP951056516, T5i, T5f); ii[WS(rs, 9)] = FMA(KP951056516, T5i, T5f); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_CEXP, 0, 9}, {TW_CEXP, 0, 19}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {136, 58, 140, 0}, 0, 0, 0 }; void X(codelet_t2_20) (planner *p) { X(kdft_dit_register) (p, t2_20, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */ /* * This function contains 276 FP additions, 164 FP multiplications, * (or, 204 additions, 92 multiplications, 72 fused multiply/add), * 123 stack variables, 4 constants, and 80 memory accesses */ #include "dft/scalar/t.h" static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O; E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ; E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX; { E T7, T16, Ta, T13, T4, T17, Tb, T12; { E Th, Tn, Tj, Tm; T2 = W[0]; T5 = W[1]; Tg = W[2]; Ti = W[3]; Th = T2 * Tg; Tn = T5 * Tg; Tj = T5 * Ti; Tm = T2 * Ti; Tk = Th - Tj; To = Tm + Tn; T1h = Tm - Tn; T1f = Th + Tj; T6 = W[5]; T7 = T5 * T6; T16 = Tg * T6; Ta = T2 * T6; T13 = Ti * T6; T3 = W[4]; T4 = T2 * T3; T17 = Ti * T3; Tb = T5 * T3; T12 = Tg * T3; } T8 = T4 - T7; T14 = T12 + T13; T1Q = T16 + T17; Tc = Ta + Tb; T1O = T12 - T13; T1v = Ta - Tb; T18 = T16 - T17; T1t = T4 + T7; { E T1l, T1m, T1g, T1i; T1l = T1f * T6; T1m = T1h * T3; T1n = T1l + T1m; T24 = T1l - T1m; T1g = T1f * T3; T1i = T1h * T6; T1j = T1g - T1i; T22 = T1g + T1i; { E Tl, Tp, Ts, Tt; Tl = Tk * T3; Tp = To * T6; Tq = Tl + Tp; Ts = Tk * T6; Tt = To * T3; Tu = Ts - Tt; T1E = Tl - Tp; T1G = Ts + Tt; Tx = W[6]; Ty = W[7]; Tz = FMA(Tk, Tx, To * Ty); TJ = FMA(Tq, Tx, Tu * Ty); T1Z = FNMS(T1h, Tx, T1f * Ty); TB = FNMS(To, Tx, Tk * Ty); T1X = FMA(T1f, Tx, T1h * Ty); T1A = FNMS(T5, Tx, T2 * Ty); TZ = FNMS(Ti, Tx, Tg * Ty); TL = FNMS(Tu, Tx, Tq * Ty); T1y = FMA(T2, Tx, T5 * Ty); TX = FMA(Tg, Tx, Ti * Ty); } } } { E TF, T2b, T4A, T4J, T2K, T3r, T4a, T4m, T1N, T28, T29, T3C, T3F, T4o, T3X; E T3Y, T44, T2f, T2g, T2h, T2n, T2s, T4L, T3g, T3h, T4w, T3n, T3o, T3p, T30; E T35, T36, TW, T1r, T1s, T3J, T3M, T4n, T3U, T3V, T43, T2c, T2d, T2e, T2y; E T2D, T4K, T3d, T3e, T4v, T3k, T3l, T3m, T2P, T2U, T2V; { E T1, T48, Te, T47, Tw, T2H, TD, T2I, T9, Td; T1 = ri[0]; T48 = ii[0]; T9 = ri[WS(rs, 10)]; Td = ii[WS(rs, 10)]; Te = FMA(T8, T9, Tc * Td); T47 = FNMS(Tc, T9, T8 * Td); { E Tr, Tv, TA, TC; Tr = ri[WS(rs, 5)]; Tv = ii[WS(rs, 5)]; Tw = FMA(Tq, Tr, Tu * Tv); T2H = FNMS(Tu, Tr, Tq * Tv); TA = ri[WS(rs, 15)]; TC = ii[WS(rs, 15)]; TD = FMA(Tz, TA, TB * TC); T2I = FNMS(TB, TA, Tz * TC); } { E Tf, TE, T4y, T4z; Tf = T1 + Te; TE = Tw + TD; TF = Tf - TE; T2b = Tf + TE; T4y = T48 - T47; T4z = Tw - TD; T4A = T4y - T4z; T4J = T4z + T4y; } { E T2G, T2J, T46, T49; T2G = T1 - Te; T2J = T2H - T2I; T2K = T2G - T2J; T3r = T2G + T2J; T46 = T2H + T2I; T49 = T47 + T48; T4a = T46 + T49; T4m = T49 - T46; } } { E T1D, T3A, T2l, T2W, T27, T3E, T2r, T34, T1M, T3B, T2m, T2Z, T1W, T3D, T2q; E T31; { E T1x, T2j, T1C, T2k; { E T1u, T1w, T1z, T1B; T1u = ri[WS(rs, 8)]; T1w = ii[WS(rs, 8)]; T1x = FMA(T1t, T1u, T1v * T1w); T2j = FNMS(T1v, T1u, T1t * T1w); T1z = ri[WS(rs, 18)]; T1B = ii[WS(rs, 18)]; T1C = FMA(T1y, T1z, T1A * T1B); T2k = FNMS(T1A, T1z, T1y * T1B); } T1D = T1x + T1C; T3A = T2j + T2k; T2l = T2j - T2k; T2W = T1x - T1C; } { E T21, T32, T26, T33; { E T1Y, T20, T23, T25; T1Y = ri[WS(rs, 17)]; T20 = ii[WS(rs, 17)]; T21 = FMA(T1X, T1Y, T1Z * T20); T32 = FNMS(T1Z, T1Y, T1X * T20); T23 = ri[WS(rs, 7)]; T25 = ii[WS(rs, 7)]; T26 = FMA(T22, T23, T24 * T25); T33 = FNMS(T24, T23, T22 * T25); } T27 = T21 + T26; T3E = T32 + T33; T2r = T21 - T26; T34 = T32 - T33; } { E T1I, T2X, T1L, T2Y; { E T1F, T1H, T1J, T1K; T1F = ri[WS(rs, 13)]; T1H = ii[WS(rs, 13)]; T1I = FMA(T1E, T1F, T1G * T1H); T2X = FNMS(T1G, T1F, T1E * T1H); T1J = ri[WS(rs, 3)]; T1K = ii[WS(rs, 3)]; T1L = FMA(Tg, T1J, Ti * T1K); T2Y = FNMS(Ti, T1J, Tg * T1K); } T1M = T1I + T1L; T3B = T2X + T2Y; T2m = T1I - T1L; T2Z = T2X - T2Y; } { E T1S, T2o, T1V, T2p; { E T1P, T1R, T1T, T1U; T1P = ri[WS(rs, 12)]; T1R = ii[WS(rs, 12)]; T1S = FMA(T1O, T1P, T1Q * T1R); T2o = FNMS(T1Q, T1P, T1O * T1R); T1T = ri[WS(rs, 2)]; T1U = ii[WS(rs, 2)]; T1V = FMA(T1f, T1T, T1h * T1U); T2p = FNMS(T1h, T1T, T1f * T1U); } T1W = T1S + T1V; T3D = T2o + T2p; T2q = T2o - T2p; T31 = T1S - T1V; } T1N = T1D - T1M; T28 = T1W - T27; T29 = T1N + T28; T3C = T3A - T3B; T3F = T3D - T3E; T4o = T3C + T3F; T3X = T3A + T3B; T3Y = T3D + T3E; T44 = T3X + T3Y; T2f = T1D + T1M; T2g = T1W + T27; T2h = T2f + T2g; T2n = T2l + T2m; T2s = T2q + T2r; T4L = T2n + T2s; T3g = T2l - T2m; T3h = T2q - T2r; T4w = T3g + T3h; T3n = T2W + T2Z; T3o = T31 + T34; T3p = T3n + T3o; T30 = T2W - T2Z; T35 = T31 - T34; T36 = T30 + T35; } { E TO, T3H, T2w, T2L, T1q, T3L, T2C, T2T, TV, T3I, T2x, T2O, T1b, T3K, T2B; E T2Q; { E TI, T2u, TN, T2v; { E TG, TH, TK, TM; TG = ri[WS(rs, 4)]; TH = ii[WS(rs, 4)]; TI = FMA(Tk, TG, To * TH); T2u = FNMS(To, TG, Tk * TH); TK = ri[WS(rs, 14)]; TM = ii[WS(rs, 14)]; TN = FMA(TJ, TK, TL * TM); T2v = FNMS(TL, TK, TJ * TM); } TO = TI + TN; T3H = T2u + T2v; T2w = T2u - T2v; T2L = TI - TN; } { E T1e, T2R, T1p, T2S; { E T1c, T1d, T1k, T1o; T1c = ri[WS(rs, 1)]; T1d = ii[WS(rs, 1)]; T1e = FMA(T2, T1c, T5 * T1d); T2R = FNMS(T5, T1c, T2 * T1d); T1k = ri[WS(rs, 11)]; T1o = ii[WS(rs, 11)]; T1p = FMA(T1j, T1k, T1n * T1o); T2S = FNMS(T1n, T1k, T1j * T1o); } T1q = T1e + T1p; T3L = T2R + T2S; T2C = T1e - T1p; T2T = T2R - T2S; } { E TR, T2M, TU, T2N; { E TP, TQ, TS, TT; TP = ri[WS(rs, 9)]; TQ = ii[WS(rs, 9)]; TR = FMA(T3, TP, T6 * TQ); T2M = FNMS(T6, TP, T3 * TQ); TS = ri[WS(rs, 19)]; TT = ii[WS(rs, 19)]; TU = FMA(Tx, TS, Ty * TT); T2N = FNMS(Ty, TS, Tx * TT); } TV = TR + TU; T3I = T2M + T2N; T2x = TR - TU; T2O = T2M - T2N; } { E T11, T2z, T1a, T2A; { E TY, T10, T15, T19; TY = ri[WS(rs, 16)]; T10 = ii[WS(rs, 16)]; T11 = FMA(TX, TY, TZ * T10); T2z = FNMS(TZ, TY, TX * T10); T15 = ri[WS(rs, 6)]; T19 = ii[WS(rs, 6)]; T1a = FMA(T14, T15, T18 * T19); T2A = FNMS(T18, T15, T14 * T19); } T1b = T11 + T1a; T3K = T2z + T2A; T2B = T2z - T2A; T2Q = T11 - T1a; } TW = TO - TV; T1r = T1b - T1q; T1s = TW + T1r; T3J = T3H - T3I; T3M = T3K - T3L; T4n = T3J + T3M; T3U = T3H + T3I; T3V = T3K + T3L; T43 = T3U + T3V; T2c = TO + TV; T2d = T1b + T1q; T2e = T2c + T2d; T2y = T2w + T2x; T2D = T2B + T2C; T4K = T2y + T2D; T3d = T2w - T2x; T3e = T2B - T2C; T4v = T3d + T3e; T3k = T2L + T2O; T3l = T2Q + T2T; T3m = T3k + T3l; T2P = T2L - T2O; T2U = T2Q - T2T; T2V = T2P + T2U; } { E T3y, T2a, T3x, T3O, T3Q, T3G, T3N, T3P, T3z; T3y = KP559016994 * (T1s - T29); T2a = T1s + T29; T3x = FNMS(KP250000000, T2a, TF); T3G = T3C - T3F; T3N = T3J - T3M; T3O = FNMS(KP587785252, T3N, KP951056516 * T3G); T3Q = FMA(KP951056516, T3N, KP587785252 * T3G); ri[WS(rs, 10)] = TF + T2a; T3P = T3y + T3x; ri[WS(rs, 14)] = T3P - T3Q; ri[WS(rs, 6)] = T3P + T3Q; T3z = T3x - T3y; ri[WS(rs, 2)] = T3z - T3O; ri[WS(rs, 18)] = T3z + T3O; } { E T4r, T4p, T4q, T4l, T4u, T4j, T4k, T4t, T4s; T4r = KP559016994 * (T4n - T4o); T4p = T4n + T4o; T4q = FNMS(KP250000000, T4p, T4m); T4j = T1N - T28; T4k = TW - T1r; T4l = FNMS(KP587785252, T4k, KP951056516 * T4j); T4u = FMA(KP951056516, T4k, KP587785252 * T4j); ii[WS(rs, 10)] = T4p + T4m; T4t = T4r + T4q; ii[WS(rs, 6)] = T4t - T4u; ii[WS(rs, 14)] = T4u + T4t; T4s = T4q - T4r; ii[WS(rs, 2)] = T4l + T4s; ii[WS(rs, 18)] = T4s - T4l; } { E T3R, T2i, T3S, T40, T42, T3W, T3Z, T41, T3T; T3R = KP559016994 * (T2e - T2h); T2i = T2e + T2h; T3S = FNMS(KP250000000, T2i, T2b); T3W = T3U - T3V; T3Z = T3X - T3Y; T40 = FMA(KP951056516, T3W, KP587785252 * T3Z); T42 = FNMS(KP587785252, T3W, KP951056516 * T3Z); ri[0] = T2b + T2i; T41 = T3S - T3R; ri[WS(rs, 12)] = T41 - T42; ri[WS(rs, 8)] = T41 + T42; T3T = T3R + T3S; ri[WS(rs, 4)] = T3T - T40; ri[WS(rs, 16)] = T3T + T40; } { E T4e, T45, T4f, T4d, T4i, T4b, T4c, T4h, T4g; T4e = KP559016994 * (T43 - T44); T45 = T43 + T44; T4f = FNMS(KP250000000, T45, T4a); T4b = T2c - T2d; T4c = T2f - T2g; T4d = FMA(KP951056516, T4b, KP587785252 * T4c); T4i = FNMS(KP587785252, T4b, KP951056516 * T4c); ii[0] = T45 + T4a; T4h = T4f - T4e; ii[WS(rs, 8)] = T4h - T4i; ii[WS(rs, 12)] = T4i + T4h; T4g = T4e + T4f; ii[WS(rs, 4)] = T4d + T4g; ii[WS(rs, 16)] = T4g - T4d; } { E T39, T37, T38, T2F, T3b, T2t, T2E, T3c, T3a; T39 = KP559016994 * (T2V - T36); T37 = T2V + T36; T38 = FNMS(KP250000000, T37, T2K); T2t = T2n - T2s; T2E = T2y - T2D; T2F = FNMS(KP587785252, T2E, KP951056516 * T2t); T3b = FMA(KP951056516, T2E, KP587785252 * T2t); ri[WS(rs, 15)] = T2K + T37; T3c = T39 + T38; ri[WS(rs, 11)] = T3b + T3c; ri[WS(rs, 19)] = T3c - T3b; T3a = T38 - T39; ri[WS(rs, 3)] = T2F + T3a; ri[WS(rs, 7)] = T3a - T2F; } { E T4O, T4M, T4N, T4S, T4U, T4Q, T4R, T4T, T4P; T4O = KP559016994 * (T4K - T4L); T4M = T4K + T4L; T4N = FNMS(KP250000000, T4M, T4J); T4Q = T30 - T35; T4R = T2P - T2U; T4S = FNMS(KP587785252, T4R, KP951056516 * T4Q); T4U = FMA(KP951056516, T4R, KP587785252 * T4Q); ii[WS(rs, 15)] = T4M + T4J; T4T = T4O + T4N; ii[WS(rs, 11)] = T4T - T4U; ii[WS(rs, 19)] = T4U + T4T; T4P = T4N - T4O; ii[WS(rs, 3)] = T4P - T4S; ii[WS(rs, 7)] = T4S + T4P; } { E T3q, T3s, T3t, T3j, T3v, T3f, T3i, T3w, T3u; T3q = KP559016994 * (T3m - T3p); T3s = T3m + T3p; T3t = FNMS(KP250000000, T3s, T3r); T3f = T3d - T3e; T3i = T3g - T3h; T3j = FMA(KP951056516, T3f, KP587785252 * T3i); T3v = FNMS(KP587785252, T3f, KP951056516 * T3i); ri[WS(rs, 5)] = T3r + T3s; T3w = T3t - T3q; ri[WS(rs, 13)] = T3v + T3w; ri[WS(rs, 17)] = T3w - T3v; T3u = T3q + T3t; ri[WS(rs, 1)] = T3j + T3u; ri[WS(rs, 9)] = T3u - T3j; } { E T4x, T4B, T4C, T4G, T4I, T4E, T4F, T4H, T4D; T4x = KP559016994 * (T4v - T4w); T4B = T4v + T4w; T4C = FNMS(KP250000000, T4B, T4A); T4E = T3k - T3l; T4F = T3n - T3o; T4G = FMA(KP951056516, T4E, KP587785252 * T4F); T4I = FNMS(KP587785252, T4E, KP951056516 * T4F); ii[WS(rs, 5)] = T4B + T4A; T4H = T4C - T4x; ii[WS(rs, 13)] = T4H - T4I; ii[WS(rs, 17)] = T4I + T4H; T4D = T4x + T4C; ii[WS(rs, 1)] = T4D - T4G; ii[WS(rs, 9)] = T4G + T4D; } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_CEXP, 0, 9}, {TW_CEXP, 0, 19}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {204, 92, 72, 0}, 0, 0, 0 }; void X(codelet_t2_20) (planner *p) { X(kdft_dit_register) (p, t2_20, &desc); } #endif