/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:25 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */ /* * This function contains 44 FP additions, 40 FP multiplications, * (or, 14 additions, 10 multiplications, 30 fused multiply/add), * 38 stack variables, 4 constants, and 20 memory accesses */ #include "dft/scalar/t.h" static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { E T2, Ta, T8, T5, Tb, Tm, Tf, Tj, T9, Te; T2 = W[0]; Ta = W[3]; T8 = W[2]; T9 = T2 * T8; Te = T2 * Ta; T5 = W[1]; Tb = FNMS(T5, Ta, T9); Tm = FNMS(T5, T8, Te); Tf = FMA(T5, T8, Te); Tj = FMA(T5, Ta, T9); { E T1, TO, T7, Th, Ti, Tz, TB, TL, To, Ts, Tt, TE, TG, TM; T1 = ri[0]; TO = ii[0]; { E T3, T4, T6, Ty, Tc, Td, Tg, TA; T3 = ri[WS(rs, 1)]; T4 = T2 * T3; T6 = ii[WS(rs, 1)]; Ty = T2 * T6; Tc = ri[WS(rs, 4)]; Td = Tb * Tc; Tg = ii[WS(rs, 4)]; TA = Tb * Tg; T7 = FMA(T5, T6, T4); Th = FMA(Tf, Tg, Td); Ti = T7 + Th; Tz = FNMS(T5, T3, Ty); TB = FNMS(Tf, Tc, TA); TL = Tz + TB; } { E Tk, Tl, Tn, TD, Tp, Tq, Tr, TF; Tk = ri[WS(rs, 2)]; Tl = Tj * Tk; Tn = ii[WS(rs, 2)]; TD = Tj * Tn; Tp = ri[WS(rs, 3)]; Tq = T8 * Tp; Tr = ii[WS(rs, 3)]; TF = T8 * Tr; To = FMA(Tm, Tn, Tl); Ts = FMA(Ta, Tr, Tq); Tt = To + Ts; TE = FNMS(Tm, Tk, TD); TG = FNMS(Ta, Tp, TF); TM = TE + TG; } { E Tw, Tu, Tv, TI, TK, TC, TH, TJ, Tx; Tw = Ti - Tt; Tu = Ti + Tt; Tv = FNMS(KP250000000, Tu, T1); TC = Tz - TB; TH = TE - TG; TI = FMA(KP618033988, TH, TC); TK = FNMS(KP618033988, TC, TH); ri[0] = T1 + Tu; TJ = FNMS(KP559016994, Tw, Tv); ri[WS(rs, 2)] = FNMS(KP951056516, TK, TJ); ri[WS(rs, 3)] = FMA(KP951056516, TK, TJ); Tx = FMA(KP559016994, Tw, Tv); ri[WS(rs, 4)] = FNMS(KP951056516, TI, Tx); ri[WS(rs, 1)] = FMA(KP951056516, TI, Tx); } { E TQ, TN, TP, TU, TW, TS, TT, TV, TR; TQ = TL - TM; TN = TL + TM; TP = FNMS(KP250000000, TN, TO); TS = T7 - Th; TT = To - Ts; TU = FMA(KP618033988, TT, TS); TW = FNMS(KP618033988, TS, TT); ii[0] = TN + TO; TV = FNMS(KP559016994, TQ, TP); ii[WS(rs, 2)] = FMA(KP951056516, TW, TV); ii[WS(rs, 3)] = FNMS(KP951056516, TW, TV); TR = FMA(KP559016994, TQ, TP); ii[WS(rs, 1)] = FNMS(KP951056516, TU, TR); ii[WS(rs, 4)] = FMA(KP951056516, TU, TR); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, {14, 10, 30, 0}, 0, 0, 0 }; void X(codelet_t2_5) (planner *p) { X(kdft_dit_register) (p, t2_5, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */ /* * This function contains 44 FP additions, 32 FP multiplications, * (or, 30 additions, 18 multiplications, 14 fused multiply/add), * 37 stack variables, 4 constants, and 20 memory accesses */ #include "dft/scalar/t.h" static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT m; for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { E T2, T4, T7, T9, Tb, Tl, Tf, Tj; { E T8, Te, Ta, Td; T2 = W[0]; T4 = W[1]; T7 = W[2]; T9 = W[3]; T8 = T2 * T7; Te = T4 * T7; Ta = T4 * T9; Td = T2 * T9; Tb = T8 - Ta; Tl = Td - Te; Tf = Td + Te; Tj = T8 + Ta; } { E T1, TI, Ty, TB, TN, TM, TF, TG, TH, Ti, Tr, Ts; T1 = ri[0]; TI = ii[0]; { E T6, Tw, Tq, TA, Th, Tx, Tn, Tz; { E T3, T5, To, Tp; T3 = ri[WS(rs, 1)]; T5 = ii[WS(rs, 1)]; T6 = FMA(T2, T3, T4 * T5); Tw = FNMS(T4, T3, T2 * T5); To = ri[WS(rs, 3)]; Tp = ii[WS(rs, 3)]; Tq = FMA(T7, To, T9 * Tp); TA = FNMS(T9, To, T7 * Tp); } { E Tc, Tg, Tk, Tm; Tc = ri[WS(rs, 4)]; Tg = ii[WS(rs, 4)]; Th = FMA(Tb, Tc, Tf * Tg); Tx = FNMS(Tf, Tc, Tb * Tg); Tk = ri[WS(rs, 2)]; Tm = ii[WS(rs, 2)]; Tn = FMA(Tj, Tk, Tl * Tm); Tz = FNMS(Tl, Tk, Tj * Tm); } Ty = Tw - Tx; TB = Tz - TA; TN = Tn - Tq; TM = T6 - Th; TF = Tw + Tx; TG = Tz + TA; TH = TF + TG; Ti = T6 + Th; Tr = Tn + Tq; Ts = Ti + Tr; } ri[0] = T1 + Ts; ii[0] = TH + TI; { E TC, TE, Tv, TD, Tt, Tu; TC = FMA(KP951056516, Ty, KP587785252 * TB); TE = FNMS(KP587785252, Ty, KP951056516 * TB); Tt = KP559016994 * (Ti - Tr); Tu = FNMS(KP250000000, Ts, T1); Tv = Tt + Tu; TD = Tu - Tt; ri[WS(rs, 4)] = Tv - TC; ri[WS(rs, 3)] = TD + TE; ri[WS(rs, 1)] = Tv + TC; ri[WS(rs, 2)] = TD - TE; } { E TO, TP, TL, TQ, TJ, TK; TO = FMA(KP951056516, TM, KP587785252 * TN); TP = FNMS(KP587785252, TM, KP951056516 * TN); TJ = KP559016994 * (TF - TG); TK = FNMS(KP250000000, TH, TI); TL = TJ + TK; TQ = TK - TJ; ii[WS(rs, 1)] = TL - TO; ii[WS(rs, 3)] = TQ - TP; ii[WS(rs, 4)] = TO + TL; ii[WS(rs, 2)] = TP + TQ; } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, {30, 18, 14, 0}, 0, 0, 0 }; void X(codelet_t2_5) (planner *p) { X(kdft_dit_register) (p, t2_5, &desc); } #endif