/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:21 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */ /* * This function contains 1154 FP additions, 840 FP multiplications, * (or, 520 additions, 206 multiplications, 634 fused multiply/add), * 316 stack variables, 15 constants, and 256 memory accesses */ #include "dft/scalar/t.h" static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP098491403, +0.098491403357164253077197521291327432293052451); DK(KP820678790, +0.820678790828660330972281985331011598767386482); DK(KP303346683, +0.303346683607342391675883946941299872384187453); DK(KP534511135, +0.534511135950791641089685961295362908582039528); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP414213562, +0.414213562373095048801688724209698078569671875); { INT m; for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { E T2, T3, Tc, T8, Te, T5, T6, Tr, T7, TJ, T14, T3d, T3i, TG, T10; E T3a, T3g, TL, TP, Tb, Td, T17, Tt, Tu, T1i, Ti, T2U, T1t, T7B, T5O; E T3N, T3U, T1I, T3G, T3R, T79, T1x, T3D, T2l, T3X, T2d, T1M, T4B, T4x, T4T; E T2h, T29, T5s, T81, T5w, T7X, T7N, T7h, T64, T6a, T6e, T7l, T60, T7R, T5A; E T6h, T6J, T7o, T5E, T6k, T6N, T7r, T2X, T6t, T6x, TO, TK, TQ, T7c, TU; E T2x, T2u, T2y, T7E, T2C, T4b, T48, T4c, T5R, T4g, T3m, T3j, T3n, T4W, T3r; E Tx, Ty, TC, T1Z, T23, T4s, T4p, T70, T6W, T19, T41, T44, T1a, T1e, T35; E T31, T59, T55, T1k, T1R, T1V, T1l, T1p, T2Q, T2N, T8i, T8e, Th, T4E, T4H; E Tj, Tn, T3A, T3w, T5n, T5j; { E T1H, Tg, Tw, T1s, T2g, TH, T2t, T47, T3h, T28, T4w, T3M, T2c, T4A, T3Q; E T1w, T2k, T1L, T5r, T80; { E TI, T13, TF, TZ, Ta, T4, T9, Ts; T2 = W[0]; T3 = W[2]; T4 = T2 * T3; Tc = W[5]; TI = T3 * Tc; T13 = T2 * Tc; T8 = W[4]; Te = W[6]; TF = T3 * T8; T1H = T8 * Te; TZ = T2 * T8; T5 = W[1]; T6 = W[3]; Ta = T2 * T6; Tr = FMA(T5, T6, T4); T7 = FNMS(T5, T6, T4); Tg = T7 * Tc; Tw = Tr * Tc; T1s = T3 * Te; T2g = T2 * Te; TJ = FMA(T6, T8, TI); T14 = FNMS(T5, T8, T13); T3d = FMA(T5, T8, T13); T3i = FNMS(T6, T8, TI); TG = FNMS(T6, Tc, TF); TH = TG * Te; T10 = FMA(T5, Tc, TZ); T2t = T10 * Te; T3a = FNMS(T5, Tc, TZ); T47 = T3a * Te; T3g = FMA(T6, Tc, TF); T3h = T3g * Te; TL = W[8]; T28 = T3 * TL; T4w = T8 * TL; T3M = T2 * TL; TP = W[9]; T2c = T3 * TP; T4A = T8 * TP; T3Q = T2 * TP; T9 = T7 * T8; Tb = FMA(T5, T3, Ta); Td = FMA(Tb, Tc, T9); T17 = FNMS(Tb, Tc, T9); Ts = Tr * T8; Tt = FNMS(T5, T3, Ta); Tu = FNMS(Tt, Tc, Ts); T1i = FMA(Tt, Tc, Ts); Ti = W[7]; T1w = T3 * Ti; T2k = T2 * Ti; T1L = T8 * Ti; T2U = FMA(Tc, Ti, T1H); } T1t = FMA(T6, Ti, T1s); T7B = FNMS(T14, Ti, T2t); T5O = FNMS(T3d, Ti, T47); T3N = FMA(T5, TP, T3M); T3U = FNMS(T6, Ti, T1s); T1I = FNMS(Tc, Ti, T1H); T3G = FNMS(T5, Te, T2k); T3R = FNMS(T5, TL, T3Q); T79 = FNMS(TJ, Ti, TH); T1x = FNMS(T6, Te, T1w); T3D = FMA(T5, Ti, T2g); T2l = FMA(T5, Te, T2k); T3X = FMA(T6, Te, T1w); T2d = FNMS(T6, TL, T2c); T1M = FMA(Tc, Te, T1L); T4B = FNMS(Tc, TL, T4A); T4x = FMA(Tc, TP, T4w); T4T = FNMS(T3i, Ti, T3h); T2h = FNMS(T5, Ti, T2g); T29 = FMA(T6, TP, T28); T5r = T3g * TL; T5s = FMA(T3i, TP, T5r); T80 = T7 * TP; T81 = FNMS(Tb, TL, T80); { E T5v, T7W, T7M, T7g, T63; T5v = T3g * TP; T5w = FNMS(T3i, TL, T5v); T7W = T7 * TL; T7X = FMA(Tb, TP, T7W); T7M = TG * TL; T7N = FMA(TJ, TP, T7M); T7g = T10 * TL; T7h = FMA(T14, TP, T7g); T63 = T3a * TP; T64 = FNMS(T3d, TL, T63); } { E T69, T6d, T7k, T5Z, T7Q, T5z; T69 = Tr * TL; T6a = FMA(Tt, TP, T69); T6d = Tr * TP; T6e = FNMS(Tt, TL, T6d); T7k = T10 * TP; T7l = FNMS(T14, TL, T7k); T5Z = T3a * TL; T60 = FMA(T3d, TP, T5Z); T7Q = TG * TP; T7R = FNMS(TJ, TL, T7Q); T5z = Tr * Te; T5A = FMA(Tt, Ti, T5z); T6h = FNMS(Tt, Ti, T5z); } { E T6I, T5D, T6M, T6s, T6w; T6I = T7 * Te; T6J = FNMS(Tb, Ti, T6I); T7o = FMA(Tb, Ti, T6I); T5D = Tr * Ti; T5E = FNMS(Tt, Te, T5D); T6k = FMA(Tt, Te, T5D); T6M = T7 * Ti; T6N = FMA(Tb, Te, T6M); T7r = FNMS(Tb, Te, T6M); T6s = T2U * TL; T6w = T2U * TP; T2X = FNMS(Tc, Te, T1L); T6t = FMA(T2X, TP, T6s); T6x = FNMS(T2X, TL, T6w); { E TN, TM, TT, T2w, T2v, T2B; TN = TG * Ti; TO = FNMS(TJ, Te, TN); TK = FMA(TJ, Ti, TH); TM = TK * TL; TT = TK * TP; TQ = FMA(TO, TP, TM); T7c = FMA(TJ, Te, TN); TU = FNMS(TO, TL, TT); T2w = T10 * Ti; T2x = FNMS(T14, Te, T2w); T2u = FMA(T14, Ti, T2t); T2v = T2u * TL; T2B = T2u * TP; T2y = FMA(T2x, TP, T2v); T7E = FMA(T14, Te, T2w); T2C = FNMS(T2x, TL, T2B); } } { E T4a, T49, T4f, T3l, T3k, T3q; T4a = T3a * Ti; T4b = FNMS(T3d, Te, T4a); T48 = FMA(T3d, Ti, T47); T49 = T48 * TL; T4f = T48 * TP; T4c = FMA(T4b, TP, T49); T5R = FMA(T3d, Te, T4a); T4g = FNMS(T4b, TL, T4f); T3l = T3g * Ti; T3m = FNMS(T3i, Te, T3l); T3j = FMA(T3i, Ti, T3h); T3k = T3j * TL; T3q = T3j * TP; T3n = FMA(T3m, TP, T3k); T4W = FMA(T3i, Te, T3l); T3r = FNMS(T3m, TL, T3q); { E T1Y, T22, Tv, TB, T6Z, T6V; T1Y = Tu * TL; T22 = Tu * TP; Tv = Tu * Te; TB = Tu * Ti; Tx = FMA(Tt, T8, Tw); Ty = FMA(Tx, Ti, Tv); TC = FNMS(Tx, Te, TB); T1Z = FMA(Tx, TP, T1Y); T23 = FNMS(Tx, TL, T22); T4s = FMA(Tx, Te, TB); T4p = FNMS(Tx, Ti, Tv); T6Z = Ty * TP; T70 = FNMS(TC, TL, T6Z); T6V = Ty * TL; T6W = FMA(TC, TP, T6V); } } { E T30, T34, T18, T1d, T58, T54; T30 = T17 * TL; T34 = T17 * TP; T18 = T17 * Te; T1d = T17 * Ti; T19 = FMA(Tb, T8, Tg); T41 = FMA(T19, Ti, T18); T44 = FNMS(T19, Te, T1d); T1a = FNMS(T19, Ti, T18); T1e = FMA(T19, Te, T1d); T35 = FNMS(T19, TL, T34); T31 = FMA(T19, TP, T30); T58 = T41 * TP; T59 = FNMS(T44, TL, T58); T54 = T41 * TL; T55 = FMA(T44, TP, T54); } { E T1j, T1o, T1Q, T1U, T8h, T8d; T1j = T1i * TL; T1o = T1i * TP; T1Q = T1i * Te; T1U = T1i * Ti; T1k = FNMS(Tt, T8, Tw); T1R = FMA(T1k, Ti, T1Q); T1V = FNMS(T1k, Te, T1U); T1l = FMA(T1k, TP, T1j); T1p = FNMS(T1k, TL, T1o); T2Q = FMA(T1k, Te, T1U); T2N = FNMS(T1k, Ti, T1Q); T8h = T1R * TP; T8i = FNMS(T1V, TL, T8h); T8d = T1R * TL; T8e = FMA(T1V, TP, T8d); } { E T3v, T3z, Tf, Tm, T5m, T5i; T3v = Td * TL; T3z = Td * TP; Tf = Td * Te; Tm = Td * Ti; Th = FNMS(Tb, T8, Tg); T4E = FMA(Th, Ti, Tf); T4H = FNMS(Th, Te, Tm); Tj = FNMS(Th, Ti, Tf); Tn = FMA(Th, Te, Tm); T3A = FNMS(Th, TL, T3z); T3w = FMA(Th, TP, T3v); T5m = T4E * TP; T5n = FNMS(T4H, TL, T5m); T5i = T4E * TL; T5j = FMA(T4H, TP, T5i); } } { E TY, Tg4, Tl9, TlD, T8w, TdS, Tkd, TkE, T2G, Tge, Tgh, TiK, T98, Te1, T9f; E Te0, T39, Tgq, Tgn, TiN, T9p, Te5, T9M, Te8, T74, Thr, Thc, Tja, TbI, TeE; E TcB, TeP, T1B, TkD, Tg7, Tk7, T8D, TdT, T8K, TdU, T27, Tg9, Tgc, TiJ, T8T; E TdY, T90, TdX, T4k, TgB, Tgy, TiT, T9Y, Tec, Tal, Tef, T5d, Th0, TgL, TiZ; E Taz, Tel, Tbs, Tew, T3K, Tgo, Tgt, TiO, T9E, Te9, T9P, Te6, T4L, Tgz, TgE; E TiU, Tad, Teg, Tao, Ted, T5I, TgM, Th3, Tj0, TaO, Tex, Tbv, Tem, T7v, Thd; E Thu, Tjb, TbX, TeQ, TcE, TeF, T68, Tj5, TgS, Th5, Tbj, Tez, Tbx, Teq, T6B; E Tj6, TgX, Th6, Tb4, TeA, Tby, Tet, T7V, Tjg, Thj, Thw, Tcs, TeS, TcG, TeJ; E T8m, Tjh, Tho, Thx, Tcd, TeT, TcH, TeM; { E T1, Tkb, Tp, Tka, TE, T8s, TW, T8u; T1 = ri[0]; Tkb = ii[0]; { E Tk, Tl, To, Tk9; Tk = ri[WS(rs, 32)]; Tl = Tj * Tk; To = ii[WS(rs, 32)]; Tk9 = Tj * To; Tp = FMA(Tn, To, Tl); Tka = FNMS(Tn, Tk, Tk9); } { E Tz, TA, TD, T8r; Tz = ri[WS(rs, 16)]; TA = Ty * Tz; TD = ii[WS(rs, 16)]; T8r = Ty * TD; TE = FMA(TC, TD, TA); T8s = FNMS(TC, Tz, T8r); } { E TR, TS, TV, T8t; TR = ri[WS(rs, 48)]; TS = TQ * TR; TV = ii[WS(rs, 48)]; T8t = TQ * TV; TW = FMA(TU, TV, TS); T8u = FNMS(TU, TR, T8t); } { E Tq, TX, Tl7, Tl8; Tq = T1 + Tp; TX = TE + TW; TY = Tq + TX; Tg4 = Tq - TX; Tl7 = Tkb - Tka; Tl8 = TE - TW; Tl9 = Tl7 - Tl8; TlD = Tl8 + Tl7; } { E T8q, T8v, Tk8, Tkc; T8q = T1 - Tp; T8v = T8s - T8u; T8w = T8q - T8v; TdS = T8q + T8v; Tk8 = T8s + T8u; Tkc = Tka + Tkb; Tkd = Tk8 + Tkc; TkE = Tkc - Tk8; } } { E T2f, T93, T2E, T9d, T2n, T95, T2s, T9b; { E T2a, T2b, T2e, T92; T2a = ri[WS(rs, 60)]; T2b = T29 * T2a; T2e = ii[WS(rs, 60)]; T92 = T29 * T2e; T2f = FMA(T2d, T2e, T2b); T93 = FNMS(T2d, T2a, T92); } { E T2z, T2A, T2D, T9c; T2z = ri[WS(rs, 44)]; T2A = T2y * T2z; T2D = ii[WS(rs, 44)]; T9c = T2y * T2D; T2E = FMA(T2C, T2D, T2A); T9d = FNMS(T2C, T2z, T9c); } { E T2i, T2j, T2m, T94; T2i = ri[WS(rs, 28)]; T2j = T2h * T2i; T2m = ii[WS(rs, 28)]; T94 = T2h * T2m; T2n = FMA(T2l, T2m, T2j); T95 = FNMS(T2l, T2i, T94); } { E T2p, T2q, T2r, T9a; T2p = ri[WS(rs, 12)]; T2q = TG * T2p; T2r = ii[WS(rs, 12)]; T9a = TG * T2r; T2s = FMA(TJ, T2r, T2q); T9b = FNMS(TJ, T2p, T9a); } { E T2o, T2F, Tgf, Tgg; T2o = T2f + T2n; T2F = T2s + T2E; T2G = T2o + T2F; Tge = T2o - T2F; Tgf = T93 + T95; Tgg = T9b + T9d; Tgh = Tgf - Tgg; TiK = Tgf + Tgg; } { E T96, T97, T99, T9e; T96 = T93 - T95; T97 = T2s - T2E; T98 = T96 + T97; Te1 = T96 - T97; T99 = T2f - T2n; T9e = T9b - T9d; T9f = T99 - T9e; Te0 = T99 + T9e; } } { E T2M, T9k, T37, T9K, T2S, T9m, T2Z, T9I; { E T2J, T2K, T2L, T9j; T2J = ri[WS(rs, 2)]; T2K = Tr * T2J; T2L = ii[WS(rs, 2)]; T9j = Tr * T2L; T2M = FMA(Tt, T2L, T2K); T9k = FNMS(Tt, T2J, T9j); } { E T32, T33, T36, T9J; T32 = ri[WS(rs, 50)]; T33 = T31 * T32; T36 = ii[WS(rs, 50)]; T9J = T31 * T36; T37 = FMA(T35, T36, T33); T9K = FNMS(T35, T32, T9J); } { E T2O, T2P, T2R, T9l; T2O = ri[WS(rs, 34)]; T2P = T2N * T2O; T2R = ii[WS(rs, 34)]; T9l = T2N * T2R; T2S = FMA(T2Q, T2R, T2P); T9m = FNMS(T2Q, T2O, T9l); } { E T2V, T2W, T2Y, T9H; T2V = ri[WS(rs, 18)]; T2W = T2U * T2V; T2Y = ii[WS(rs, 18)]; T9H = T2U * T2Y; T2Z = FMA(T2X, T2Y, T2W); T9I = FNMS(T2X, T2V, T9H); } { E T2T, T38, Tgl, Tgm; T2T = T2M + T2S; T38 = T2Z + T37; T39 = T2T + T38; Tgq = T2T - T38; Tgl = T9k + T9m; Tgm = T9I + T9K; Tgn = Tgl - Tgm; TiN = Tgl + Tgm; } { E T9n, T9o, T9G, T9L; T9n = T9k - T9m; T9o = T2Z - T37; T9p = T9n + T9o; Te5 = T9n - T9o; T9G = T2M - T2S; T9L = T9I - T9K; T9M = T9G - T9L; Te8 = T9G + T9L; } } { E T6H, TbD, T72, Tcz, T6P, TbF, T6U, Tcx; { E T6E, T6F, T6G, TbC; T6E = ri[WS(rs, 63)]; T6F = TL * T6E; T6G = ii[WS(rs, 63)]; TbC = TL * T6G; T6H = FMA(TP, T6G, T6F); TbD = FNMS(TP, T6E, TbC); } { E T6X, T6Y, T71, Tcy; T6X = ri[WS(rs, 47)]; T6Y = T6W * T6X; T71 = ii[WS(rs, 47)]; Tcy = T6W * T71; T72 = FMA(T70, T71, T6Y); Tcz = FNMS(T70, T6X, Tcy); } { E T6K, T6L, T6O, TbE; T6K = ri[WS(rs, 31)]; T6L = T6J * T6K; T6O = ii[WS(rs, 31)]; TbE = T6J * T6O; T6P = FMA(T6N, T6O, T6L); TbF = FNMS(T6N, T6K, TbE); } { E T6R, T6S, T6T, Tcw; T6R = ri[WS(rs, 15)]; T6S = TK * T6R; T6T = ii[WS(rs, 15)]; Tcw = TK * T6T; T6U = FMA(TO, T6T, T6S); Tcx = FNMS(TO, T6R, Tcw); } { E T6Q, T73, Tha, Thb; T6Q = T6H + T6P; T73 = T6U + T72; T74 = T6Q + T73; Thr = T6Q - T73; Tha = TbD + TbF; Thb = Tcx + Tcz; Thc = Tha - Thb; Tja = Tha + Thb; } { E TbG, TbH, Tcv, TcA; TbG = TbD - TbF; TbH = T6U - T72; TbI = TbG + TbH; TeE = TbG - TbH; Tcv = T6H - T6P; TcA = Tcx - Tcz; TcB = Tcv - TcA; TeP = Tcv + TcA; } } { E T16, T8y, T1z, T8I, T1g, T8A, T1r, T8G; { E T11, T12, T15, T8x; T11 = ri[WS(rs, 8)]; T12 = T10 * T11; T15 = ii[WS(rs, 8)]; T8x = T10 * T15; T16 = FMA(T14, T15, T12); T8y = FNMS(T14, T11, T8x); } { E T1u, T1v, T1y, T8H; T1u = ri[WS(rs, 24)]; T1v = T1t * T1u; T1y = ii[WS(rs, 24)]; T8H = T1t * T1y; T1z = FMA(T1x, T1y, T1v); T8I = FNMS(T1x, T1u, T8H); } { E T1b, T1c, T1f, T8z; T1b = ri[WS(rs, 40)]; T1c = T1a * T1b; T1f = ii[WS(rs, 40)]; T8z = T1a * T1f; T1g = FMA(T1e, T1f, T1c); T8A = FNMS(T1e, T1b, T8z); } { E T1m, T1n, T1q, T8F; T1m = ri[WS(rs, 56)]; T1n = T1l * T1m; T1q = ii[WS(rs, 56)]; T8F = T1l * T1q; T1r = FMA(T1p, T1q, T1n); T8G = FNMS(T1p, T1m, T8F); } { E T1h, T1A, Tg5, Tg6; T1h = T16 + T1g; T1A = T1r + T1z; T1B = T1h + T1A; TkD = T1A - T1h; Tg5 = T8y + T8A; Tg6 = T8G + T8I; Tg7 = Tg5 - Tg6; Tk7 = Tg5 + Tg6; } { E T8B, T8C, T8E, T8J; T8B = T8y - T8A; T8C = T16 - T1g; T8D = T8B - T8C; TdT = T8C + T8B; T8E = T1r - T1z; T8J = T8G - T8I; T8K = T8E + T8J; TdU = T8E - T8J; } } { E T1G, T8O, T25, T8Y, T1O, T8Q, T1X, T8W; { E T1D, T1E, T1F, T8N; T1D = ri[WS(rs, 4)]; T1E = T7 * T1D; T1F = ii[WS(rs, 4)]; T8N = T7 * T1F; T1G = FMA(Tb, T1F, T1E); T8O = FNMS(Tb, T1D, T8N); } { E T20, T21, T24, T8X; T20 = ri[WS(rs, 52)]; T21 = T1Z * T20; T24 = ii[WS(rs, 52)]; T8X = T1Z * T24; T25 = FMA(T23, T24, T21); T8Y = FNMS(T23, T20, T8X); } { E T1J, T1K, T1N, T8P; T1J = ri[WS(rs, 36)]; T1K = T1I * T1J; T1N = ii[WS(rs, 36)]; T8P = T1I * T1N; T1O = FMA(T1M, T1N, T1K); T8Q = FNMS(T1M, T1J, T8P); } { E T1S, T1T, T1W, T8V; T1S = ri[WS(rs, 20)]; T1T = T1R * T1S; T1W = ii[WS(rs, 20)]; T8V = T1R * T1W; T1X = FMA(T1V, T1W, T1T); T8W = FNMS(T1V, T1S, T8V); } { E T1P, T26, Tga, Tgb; T1P = T1G + T1O; T26 = T1X + T25; T27 = T1P + T26; Tg9 = T1P - T26; Tga = T8O + T8Q; Tgb = T8W + T8Y; Tgc = Tga - Tgb; TiJ = Tga + Tgb; } { E T8R, T8S, T8U, T8Z; T8R = T8O - T8Q; T8S = T1X - T25; T8T = T8R + T8S; TdY = T8R - T8S; T8U = T1G - T1O; T8Z = T8W - T8Y; T90 = T8U - T8Z; TdX = T8U + T8Z; } } { E T3T, T9T, T4i, Taj, T3Z, T9V, T46, Tah; { E T3O, T3P, T3S, T9S; T3O = ri[WS(rs, 62)]; T3P = T3N * T3O; T3S = ii[WS(rs, 62)]; T9S = T3N * T3S; T3T = FMA(T3R, T3S, T3P); T9T = FNMS(T3R, T3O, T9S); } { E T4d, T4e, T4h, Tai; T4d = ri[WS(rs, 46)]; T4e = T4c * T4d; T4h = ii[WS(rs, 46)]; Tai = T4c * T4h; T4i = FMA(T4g, T4h, T4e); Taj = FNMS(T4g, T4d, Tai); } { E T3V, T3W, T3Y, T9U; T3V = ri[WS(rs, 30)]; T3W = T3U * T3V; T3Y = ii[WS(rs, 30)]; T9U = T3U * T3Y; T3Z = FMA(T3X, T3Y, T3W); T9V = FNMS(T3X, T3V, T9U); } { E T42, T43, T45, Tag; T42 = ri[WS(rs, 14)]; T43 = T41 * T42; T45 = ii[WS(rs, 14)]; Tag = T41 * T45; T46 = FMA(T44, T45, T43); Tah = FNMS(T44, T42, Tag); } { E T40, T4j, Tgw, Tgx; T40 = T3T + T3Z; T4j = T46 + T4i; T4k = T40 + T4j; TgB = T40 - T4j; Tgw = T9T + T9V; Tgx = Tah + Taj; Tgy = Tgw - Tgx; TiT = Tgw + Tgx; } { E T9W, T9X, Taf, Tak; T9W = T9T - T9V; T9X = T46 - T4i; T9Y = T9W + T9X; Tec = T9W - T9X; Taf = T3T - T3Z; Tak = Tah - Taj; Tal = Taf - Tak; Tef = Taf + Tak; } } { E T4S, Tau, T5b, Tbq, T4Y, Taw, T53, Tbo; { E T4P, T4Q, T4R, Tat; T4P = ri[WS(rs, 1)]; T4Q = T2 * T4P; T4R = ii[WS(rs, 1)]; Tat = T2 * T4R; T4S = FMA(T5, T4R, T4Q); Tau = FNMS(T5, T4P, Tat); } { E T56, T57, T5a, Tbp; T56 = ri[WS(rs, 49)]; T57 = T55 * T56; T5a = ii[WS(rs, 49)]; Tbp = T55 * T5a; T5b = FMA(T59, T5a, T57); Tbq = FNMS(T59, T56, Tbp); } { E T4U, T4V, T4X, Tav; T4U = ri[WS(rs, 33)]; T4V = T4T * T4U; T4X = ii[WS(rs, 33)]; Tav = T4T * T4X; T4Y = FMA(T4W, T4X, T4V); Taw = FNMS(T4W, T4U, Tav); } { E T50, T51, T52, Tbn; T50 = ri[WS(rs, 17)]; T51 = T48 * T50; T52 = ii[WS(rs, 17)]; Tbn = T48 * T52; T53 = FMA(T4b, T52, T51); Tbo = FNMS(T4b, T50, Tbn); } { E T4Z, T5c, TgJ, TgK; T4Z = T4S + T4Y; T5c = T53 + T5b; T5d = T4Z + T5c; Th0 = T4Z - T5c; TgJ = Tau + Taw; TgK = Tbo + Tbq; TgL = TgJ - TgK; TiZ = TgJ + TgK; } { E Tax, Tay, Tbm, Tbr; Tax = Tau - Taw; Tay = T53 - T5b; Taz = Tax + Tay; Tel = Tax - Tay; Tbm = T4S - T4Y; Tbr = Tbo - Tbq; Tbs = Tbm - Tbr; Tew = Tbm + Tbr; } } { E T3f, T9s, T3I, T9B, T3t, T9u, T3C, T9z; { E T3b, T3c, T3e, T9r; T3b = ri[WS(rs, 10)]; T3c = T3a * T3b; T3e = ii[WS(rs, 10)]; T9r = T3a * T3e; T3f = FMA(T3d, T3e, T3c); T9s = FNMS(T3d, T3b, T9r); } { E T3E, T3F, T3H, T9A; T3E = ri[WS(rs, 26)]; T3F = T3D * T3E; T3H = ii[WS(rs, 26)]; T9A = T3D * T3H; T3I = FMA(T3G, T3H, T3F); T9B = FNMS(T3G, T3E, T9A); } { E T3o, T3p, T3s, T9t; T3o = ri[WS(rs, 42)]; T3p = T3n * T3o; T3s = ii[WS(rs, 42)]; T9t = T3n * T3s; T3t = FMA(T3r, T3s, T3p); T9u = FNMS(T3r, T3o, T9t); } { E T3x, T3y, T3B, T9y; T3x = ri[WS(rs, 58)]; T3y = T3w * T3x; T3B = ii[WS(rs, 58)]; T9y = T3w * T3B; T3C = FMA(T3A, T3B, T3y); T9z = FNMS(T3A, T3x, T9y); } { E T3u, T3J, Tgr, Tgs; T3u = T3f + T3t; T3J = T3C + T3I; T3K = T3u + T3J; Tgo = T3J - T3u; Tgr = T9s + T9u; Tgs = T9z + T9B; Tgt = Tgr - Tgs; TiO = Tgr + Tgs; { E T9w, T9O, T9D, T9N; { E T9q, T9v, T9x, T9C; T9q = T3f - T3t; T9v = T9s - T9u; T9w = T9q + T9v; T9O = T9v - T9q; T9x = T3C - T3I; T9C = T9z - T9B; T9D = T9x - T9C; T9N = T9x + T9C; } T9E = T9w - T9D; Te9 = T9w + T9D; T9P = T9N - T9O; Te6 = T9O + T9N; } } } { E T4o, Ta1, T4J, Taa, T4u, Ta3, T4D, Ta8; { E T4l, T4m, T4n, Ta0; T4l = ri[WS(rs, 6)]; T4m = T3g * T4l; T4n = ii[WS(rs, 6)]; Ta0 = T3g * T4n; T4o = FMA(T3i, T4n, T4m); Ta1 = FNMS(T3i, T4l, Ta0); } { E T4F, T4G, T4I, Ta9; T4F = ri[WS(rs, 22)]; T4G = T4E * T4F; T4I = ii[WS(rs, 22)]; Ta9 = T4E * T4I; T4J = FMA(T4H, T4I, T4G); Taa = FNMS(T4H, T4F, Ta9); } { E T4q, T4r, T4t, Ta2; T4q = ri[WS(rs, 38)]; T4r = T4p * T4q; T4t = ii[WS(rs, 38)]; Ta2 = T4p * T4t; T4u = FMA(T4s, T4t, T4r); Ta3 = FNMS(T4s, T4q, Ta2); } { E T4y, T4z, T4C, Ta7; T4y = ri[WS(rs, 54)]; T4z = T4x * T4y; T4C = ii[WS(rs, 54)]; Ta7 = T4x * T4C; T4D = FMA(T4B, T4C, T4z); Ta8 = FNMS(T4B, T4y, Ta7); } { E T4v, T4K, TgC, TgD; T4v = T4o + T4u; T4K = T4D + T4J; T4L = T4v + T4K; Tgz = T4K - T4v; TgC = Ta1 + Ta3; TgD = Ta8 + Taa; TgE = TgC - TgD; TiU = TgC + TgD; { E Ta5, Tan, Tac, Tam; { E T9Z, Ta4, Ta6, Tab; T9Z = T4o - T4u; Ta4 = Ta1 - Ta3; Ta5 = T9Z + Ta4; Tan = Ta4 - T9Z; Ta6 = T4D - T4J; Tab = Ta8 - Taa; Tac = Ta6 - Tab; Tam = Ta6 + Tab; } Tad = Ta5 - Tac; Teg = Ta5 + Tac; Tao = Tam - Tan; Ted = Tan + Tam; } } } { E T5h, TaC, T5G, TaL, T5p, TaE, T5y, TaJ; { E T5e, T5f, T5g, TaB; T5e = ri[WS(rs, 9)]; T5f = T8 * T5e; T5g = ii[WS(rs, 9)]; TaB = T8 * T5g; T5h = FMA(Tc, T5g, T5f); TaC = FNMS(Tc, T5e, TaB); } { E T5B, T5C, T5F, TaK; T5B = ri[WS(rs, 25)]; T5C = T5A * T5B; T5F = ii[WS(rs, 25)]; TaK = T5A * T5F; T5G = FMA(T5E, T5F, T5C); TaL = FNMS(T5E, T5B, TaK); } { E T5k, T5l, T5o, TaD; T5k = ri[WS(rs, 41)]; T5l = T5j * T5k; T5o = ii[WS(rs, 41)]; TaD = T5j * T5o; T5p = FMA(T5n, T5o, T5l); TaE = FNMS(T5n, T5k, TaD); } { E T5t, T5u, T5x, TaI; T5t = ri[WS(rs, 57)]; T5u = T5s * T5t; T5x = ii[WS(rs, 57)]; TaI = T5s * T5x; T5y = FMA(T5w, T5x, T5u); TaJ = FNMS(T5w, T5t, TaI); } { E T5q, T5H, Th1, Th2; T5q = T5h + T5p; T5H = T5y + T5G; T5I = T5q + T5H; TgM = T5H - T5q; Th1 = TaC + TaE; Th2 = TaJ + TaL; Th3 = Th1 - Th2; Tj0 = Th1 + Th2; { E TaG, Tbu, TaN, Tbt; { E TaA, TaF, TaH, TaM; TaA = T5h - T5p; TaF = TaC - TaE; TaG = TaA + TaF; Tbu = TaF - TaA; TaH = T5y - T5G; TaM = TaJ - TaL; TaN = TaH - TaM; Tbt = TaH + TaM; } TaO = TaG - TaN; Tex = TaG + TaN; Tbv = Tbt - Tbu; Tem = Tbu + Tbt; } } } { E T78, TbL, T7t, TbU, T7e, TbN, T7n, TbS; { E T75, T76, T77, TbK; T75 = ri[WS(rs, 7)]; T76 = T1i * T75; T77 = ii[WS(rs, 7)]; TbK = T1i * T77; T78 = FMA(T1k, T77, T76); TbL = FNMS(T1k, T75, TbK); } { E T7p, T7q, T7s, TbT; T7p = ri[WS(rs, 23)]; T7q = T7o * T7p; T7s = ii[WS(rs, 23)]; TbT = T7o * T7s; T7t = FMA(T7r, T7s, T7q); TbU = FNMS(T7r, T7p, TbT); } { E T7a, T7b, T7d, TbM; T7a = ri[WS(rs, 39)]; T7b = T79 * T7a; T7d = ii[WS(rs, 39)]; TbM = T79 * T7d; T7e = FMA(T7c, T7d, T7b); TbN = FNMS(T7c, T7a, TbM); } { E T7i, T7j, T7m, TbR; T7i = ri[WS(rs, 55)]; T7j = T7h * T7i; T7m = ii[WS(rs, 55)]; TbR = T7h * T7m; T7n = FMA(T7l, T7m, T7j); TbS = FNMS(T7l, T7i, TbR); } { E T7f, T7u, Ths, Tht; T7f = T78 + T7e; T7u = T7n + T7t; T7v = T7f + T7u; Thd = T7u - T7f; Ths = TbL + TbN; Tht = TbS + TbU; Thu = Ths - Tht; Tjb = Ths + Tht; { E TbP, TcD, TbW, TcC; { E TbJ, TbO, TbQ, TbV; TbJ = T78 - T7e; TbO = TbL - TbN; TbP = TbJ + TbO; TcD = TbO - TbJ; TbQ = T7n - T7t; TbV = TbS - TbU; TbW = TbQ - TbV; TcC = TbQ + TbV; } TbX = TbP - TbW; TeQ = TbP + TbW; TcE = TcC - TcD; TeF = TcD + TcC; } } } { E T5N, Tbd, T66, Tb9, T5T, Tbf, T5Y, Tb7; { E T5K, T5L, T5M, Tbc; T5K = ri[WS(rs, 5)]; T5L = Td * T5K; T5M = ii[WS(rs, 5)]; Tbc = Td * T5M; T5N = FMA(Th, T5M, T5L); Tbd = FNMS(Th, T5K, Tbc); } { E T61, T62, T65, Tb8; T61 = ri[WS(rs, 53)]; T62 = T60 * T61; T65 = ii[WS(rs, 53)]; Tb8 = T60 * T65; T66 = FMA(T64, T65, T62); Tb9 = FNMS(T64, T61, Tb8); } { E T5P, T5Q, T5S, Tbe; T5P = ri[WS(rs, 37)]; T5Q = T5O * T5P; T5S = ii[WS(rs, 37)]; Tbe = T5O * T5S; T5T = FMA(T5R, T5S, T5Q); Tbf = FNMS(T5R, T5P, Tbe); } { E T5V, T5W, T5X, Tb6; T5V = ri[WS(rs, 21)]; T5W = T3j * T5V; T5X = ii[WS(rs, 21)]; Tb6 = T3j * T5X; T5Y = FMA(T3m, T5X, T5W); Tb7 = FNMS(T3m, T5V, Tb6); } { E T5U, T67, TgR, TgO, TgP, TgQ; T5U = T5N + T5T; T67 = T5Y + T66; TgR = T5U - T67; TgO = Tbd + Tbf; TgP = Tb7 + Tb9; TgQ = TgO - TgP; T68 = T5U + T67; Tj5 = TgO + TgP; TgS = TgQ - TgR; Th5 = TgR + TgQ; } { E Tbb, Tep, Tbi, Teo; { E Tb5, Tba, Tbg, Tbh; Tb5 = T5N - T5T; Tba = Tb7 - Tb9; Tbb = Tb5 - Tba; Tep = Tb5 + Tba; Tbg = Tbd - Tbf; Tbh = T5Y - T66; Tbi = Tbg + Tbh; Teo = Tbg - Tbh; } Tbj = FNMS(KP414213562, Tbi, Tbb); Tez = FMA(KP414213562, Teo, Tep); Tbx = FMA(KP414213562, Tbb, Tbi); Teq = FNMS(KP414213562, Tep, Teo); } } { E T6g, TaY, T6z, TaU, T6m, Tb0, T6r, TaS; { E T6b, T6c, T6f, TaX; T6b = ri[WS(rs, 61)]; T6c = T6a * T6b; T6f = ii[WS(rs, 61)]; TaX = T6a * T6f; T6g = FMA(T6e, T6f, T6c); TaY = FNMS(T6e, T6b, TaX); } { E T6u, T6v, T6y, TaT; T6u = ri[WS(rs, 45)]; T6v = T6t * T6u; T6y = ii[WS(rs, 45)]; TaT = T6t * T6y; T6z = FMA(T6x, T6y, T6v); TaU = FNMS(T6x, T6u, TaT); } { E T6i, T6j, T6l, TaZ; T6i = ri[WS(rs, 29)]; T6j = T6h * T6i; T6l = ii[WS(rs, 29)]; TaZ = T6h * T6l; T6m = FMA(T6k, T6l, T6j); Tb0 = FNMS(T6k, T6i, TaZ); } { E T6o, T6p, T6q, TaR; T6o = ri[WS(rs, 13)]; T6p = T17 * T6o; T6q = ii[WS(rs, 13)]; TaR = T17 * T6q; T6r = FMA(T19, T6q, T6p); TaS = FNMS(T19, T6o, TaR); } { E T6n, T6A, TgT, TgU, TgV, TgW; T6n = T6g + T6m; T6A = T6r + T6z; TgT = T6n - T6A; TgU = TaY + Tb0; TgV = TaS + TaU; TgW = TgU - TgV; T6B = T6n + T6A; Tj6 = TgU + TgV; TgX = TgT + TgW; Th6 = TgT - TgW; } { E TaW, Tes, Tb3, Ter; { E TaQ, TaV, Tb1, Tb2; TaQ = T6g - T6m; TaV = TaS - TaU; TaW = TaQ - TaV; Tes = TaQ + TaV; Tb1 = TaY - Tb0; Tb2 = T6r - T6z; Tb3 = Tb1 + Tb2; Ter = Tb1 - Tb2; } Tb4 = FMA(KP414213562, Tb3, TaW); TeA = FNMS(KP414213562, Ter, Tes); Tby = FNMS(KP414213562, TaW, Tb3); Tet = FMA(KP414213562, Tes, Ter); } } { E T7A, Tcm, T7T, Tci, T7G, Tco, T7L, Tcg; { E T7x, T7y, T7z, Tcl; T7x = ri[WS(rs, 3)]; T7y = T3 * T7x; T7z = ii[WS(rs, 3)]; Tcl = T3 * T7z; T7A = FMA(T6, T7z, T7y); Tcm = FNMS(T6, T7x, Tcl); } { E T7O, T7P, T7S, Tch; T7O = ri[WS(rs, 51)]; T7P = T7N * T7O; T7S = ii[WS(rs, 51)]; Tch = T7N * T7S; T7T = FMA(T7R, T7S, T7P); Tci = FNMS(T7R, T7O, Tch); } { E T7C, T7D, T7F, Tcn; T7C = ri[WS(rs, 35)]; T7D = T7B * T7C; T7F = ii[WS(rs, 35)]; Tcn = T7B * T7F; T7G = FMA(T7E, T7F, T7D); Tco = FNMS(T7E, T7C, Tcn); } { E T7I, T7J, T7K, Tcf; T7I = ri[WS(rs, 19)]; T7J = T2u * T7I; T7K = ii[WS(rs, 19)]; Tcf = T2u * T7K; T7L = FMA(T2x, T7K, T7J); Tcg = FNMS(T2x, T7I, Tcf); } { E T7H, T7U, Thi, Thf, Thg, Thh; T7H = T7A + T7G; T7U = T7L + T7T; Thi = T7H - T7U; Thf = Tcm + Tco; Thg = Tcg + Tci; Thh = Thf - Thg; T7V = T7H + T7U; Tjg = Thf + Thg; Thj = Thh - Thi; Thw = Thi + Thh; } { E Tck, TeI, Tcr, TeH; { E Tce, Tcj, Tcp, Tcq; Tce = T7A - T7G; Tcj = Tcg - Tci; Tck = Tce - Tcj; TeI = Tce + Tcj; Tcp = Tcm - Tco; Tcq = T7L - T7T; Tcr = Tcp + Tcq; TeH = Tcp - Tcq; } Tcs = FNMS(KP414213562, Tcr, Tck); TeS = FMA(KP414213562, TeH, TeI); TcG = FMA(KP414213562, Tck, Tcr); TeJ = FNMS(KP414213562, TeI, TeH); } } { E T83, Tc7, T8k, Tc3, T87, Tc9, T8c, Tc1; { E T7Y, T7Z, T82, Tc6; T7Y = ri[WS(rs, 59)]; T7Z = T7X * T7Y; T82 = ii[WS(rs, 59)]; Tc6 = T7X * T82; T83 = FMA(T81, T82, T7Z); Tc7 = FNMS(T81, T7Y, Tc6); } { E T8f, T8g, T8j, Tc2; T8f = ri[WS(rs, 43)]; T8g = T8e * T8f; T8j = ii[WS(rs, 43)]; Tc2 = T8e * T8j; T8k = FMA(T8i, T8j, T8g); Tc3 = FNMS(T8i, T8f, Tc2); } { E T84, T85, T86, Tc8; T84 = ri[WS(rs, 27)]; T85 = Te * T84; T86 = ii[WS(rs, 27)]; Tc8 = Te * T86; T87 = FMA(Ti, T86, T85); Tc9 = FNMS(Ti, T84, Tc8); } { E T89, T8a, T8b, Tc0; T89 = ri[WS(rs, 11)]; T8a = Tu * T89; T8b = ii[WS(rs, 11)]; Tc0 = Tu * T8b; T8c = FMA(Tx, T8b, T8a); Tc1 = FNMS(Tx, T89, Tc0); } { E T88, T8l, Thk, Thl, Thm, Thn; T88 = T83 + T87; T8l = T8c + T8k; Thk = T88 - T8l; Thl = Tc7 + Tc9; Thm = Tc1 + Tc3; Thn = Thl - Thm; T8m = T88 + T8l; Tjh = Thl + Thm; Tho = Thk + Thn; Thx = Thk - Thn; } { E Tc5, TeL, Tcc, TeK; { E TbZ, Tc4, Tca, Tcb; TbZ = T83 - T87; Tc4 = Tc1 - Tc3; Tc5 = TbZ - Tc4; TeL = TbZ + Tc4; Tca = Tc7 - Tc9; Tcb = T8c - T8k; Tcc = Tca + Tcb; TeK = Tca - Tcb; } Tcd = FMA(KP414213562, Tcc, Tc5); TeT = FNMS(KP414213562, TeK, TeL); TcH = FNMS(KP414213562, Tc5, Tcc); TeM = FMA(KP414213562, TeL, TeK); } } { E T2I, TjG, T4N, Tkj, Tkf, Tkk, TjJ, Tk5, T8o, Tk2, TjU, TjY, T6D, Tk1, TjP; E TjX; { E T1C, T2H, TjH, TjI; T1C = TY + T1B; T2H = T27 + T2G; T2I = T1C + T2H; TjG = T1C - T2H; { E T3L, T4M, Tk6, Tke; T3L = T39 + T3K; T4M = T4k + T4L; T4N = T3L + T4M; Tkj = T4M - T3L; Tk6 = TiJ + TiK; Tke = Tk7 + Tkd; Tkf = Tk6 + Tke; Tkk = Tke - Tk6; } TjH = TiN + TiO; TjI = TiT + TiU; TjJ = TjH - TjI; Tk5 = TjH + TjI; { E T7w, T8n, TjQ, TjR, TjS, TjT; T7w = T74 + T7v; T8n = T7V + T8m; TjQ = T7w - T8n; TjR = Tja + Tjb; TjS = Tjg + Tjh; TjT = TjR - TjS; T8o = T7w + T8n; Tk2 = TjR + TjS; TjU = TjQ - TjT; TjY = TjQ + TjT; } { E T5J, T6C, TjL, TjM, TjN, TjO; T5J = T5d + T5I; T6C = T68 + T6B; TjL = T5J - T6C; TjM = TiZ + Tj0; TjN = Tj5 + Tj6; TjO = TjM - TjN; T6D = T5J + T6C; Tk1 = TjM + TjN; TjP = TjL + TjO; TjX = TjO - TjL; } } { E T4O, T8p, Tk4, Tkg; T4O = T2I + T4N; T8p = T6D + T8o; ri[WS(rs, 32)] = T4O - T8p; ri[0] = T4O + T8p; Tk4 = Tk1 + Tk2; Tkg = Tk5 + Tkf; ii[0] = Tk4 + Tkg; ii[WS(rs, 32)] = Tkg - Tk4; } { E TjK, TjV, Tkl, Tkm; TjK = TjG + TjJ; TjV = TjP + TjU; ri[WS(rs, 40)] = FNMS(KP707106781, TjV, TjK); ri[WS(rs, 8)] = FMA(KP707106781, TjV, TjK); Tkl = Tkj + Tkk; Tkm = TjX + TjY; ii[WS(rs, 8)] = FMA(KP707106781, Tkm, Tkl); ii[WS(rs, 40)] = FNMS(KP707106781, Tkm, Tkl); } { E TjW, TjZ, Tkn, Tko; TjW = TjG - TjJ; TjZ = TjX - TjY; ri[WS(rs, 56)] = FNMS(KP707106781, TjZ, TjW); ri[WS(rs, 24)] = FMA(KP707106781, TjZ, TjW); Tkn = Tkk - Tkj; Tko = TjU - TjP; ii[WS(rs, 24)] = FMA(KP707106781, Tko, Tkn); ii[WS(rs, 56)] = FNMS(KP707106781, Tko, Tkn); } { E Tk0, Tk3, Tkh, Tki; Tk0 = T2I - T4N; Tk3 = Tk1 - Tk2; ri[WS(rs, 48)] = Tk0 - Tk3; ri[WS(rs, 16)] = Tk0 + Tk3; Tkh = T8o - T6D; Tki = Tkf - Tk5; ii[WS(rs, 16)] = Tkh + Tki; ii[WS(rs, 48)] = Tki - Tkh; } } { E TiM, Tjq, Tkr, Tkx, TiX, Tky, Tjt, Tks, Tj9, TjD, Tjn, Tjx, Tjk, TjE, Tjo; E TjA; { E TiI, TiL, Tkp, Tkq; TiI = TY - T1B; TiL = TiJ - TiK; TiM = TiI - TiL; Tjq = TiI + TiL; Tkp = T2G - T27; Tkq = Tkd - Tk7; Tkr = Tkp + Tkq; Tkx = Tkq - Tkp; } { E TiR, Tjr, TiW, Tjs; { E TiP, TiQ, TiS, TiV; TiP = TiN - TiO; TiQ = T39 - T3K; TiR = TiP - TiQ; Tjr = TiQ + TiP; TiS = T4k - T4L; TiV = TiT - TiU; TiW = TiS + TiV; Tjs = TiS - TiV; } TiX = TiR - TiW; Tky = Tjs - Tjr; Tjt = Tjr + Tjs; Tks = TiR + TiW; } { E Tj3, Tjw, Tj8, Tjv; { E Tj1, Tj2, Tj4, Tj7; Tj1 = TiZ - Tj0; Tj2 = T6B - T68; Tj3 = Tj1 - Tj2; Tjw = Tj1 + Tj2; Tj4 = T5d - T5I; Tj7 = Tj5 - Tj6; Tj8 = Tj4 - Tj7; Tjv = Tj4 + Tj7; } Tj9 = FMA(KP414213562, Tj8, Tj3); TjD = FNMS(KP414213562, Tjv, Tjw); Tjn = FNMS(KP414213562, Tj3, Tj8); Tjx = FMA(KP414213562, Tjw, Tjv); } { E Tje, Tjz, Tjj, Tjy; { E Tjc, Tjd, Tjf, Tji; Tjc = Tja - Tjb; Tjd = T8m - T7V; Tje = Tjc - Tjd; Tjz = Tjc + Tjd; Tjf = T74 - T7v; Tji = Tjg - Tjh; Tjj = Tjf - Tji; Tjy = Tjf + Tji; } Tjk = FNMS(KP414213562, Tjj, Tje); TjE = FMA(KP414213562, Tjy, Tjz); Tjo = FMA(KP414213562, Tje, Tjj); TjA = FNMS(KP414213562, Tjz, Tjy); } { E TiY, Tjl, Tkz, TkA; TiY = FMA(KP707106781, TiX, TiM); Tjl = Tj9 - Tjk; ri[WS(rs, 44)] = FNMS(KP923879532, Tjl, TiY); ri[WS(rs, 12)] = FMA(KP923879532, Tjl, TiY); Tkz = FMA(KP707106781, Tky, Tkx); TkA = Tjo - Tjn; ii[WS(rs, 12)] = FMA(KP923879532, TkA, Tkz); ii[WS(rs, 44)] = FNMS(KP923879532, TkA, Tkz); } { E Tjm, Tjp, TkB, TkC; Tjm = FNMS(KP707106781, TiX, TiM); Tjp = Tjn + Tjo; ri[WS(rs, 28)] = FNMS(KP923879532, Tjp, Tjm); ri[WS(rs, 60)] = FMA(KP923879532, Tjp, Tjm); TkB = FNMS(KP707106781, Tky, Tkx); TkC = Tj9 + Tjk; ii[WS(rs, 28)] = FNMS(KP923879532, TkC, TkB); ii[WS(rs, 60)] = FMA(KP923879532, TkC, TkB); } { E Tju, TjB, Tkt, Tku; Tju = FMA(KP707106781, Tjt, Tjq); TjB = Tjx + TjA; ri[WS(rs, 36)] = FNMS(KP923879532, TjB, Tju); ri[WS(rs, 4)] = FMA(KP923879532, TjB, Tju); Tkt = FMA(KP707106781, Tks, Tkr); Tku = TjD + TjE; ii[WS(rs, 4)] = FMA(KP923879532, Tku, Tkt); ii[WS(rs, 36)] = FNMS(KP923879532, Tku, Tkt); } { E TjC, TjF, Tkv, Tkw; TjC = FNMS(KP707106781, Tjt, Tjq); TjF = TjD - TjE; ri[WS(rs, 52)] = FNMS(KP923879532, TjF, TjC); ri[WS(rs, 20)] = FMA(KP923879532, TjF, TjC); Tkv = FNMS(KP707106781, Tks, Tkr); Tkw = TjA - Tjx; ii[WS(rs, 20)] = FMA(KP923879532, Tkw, Tkv); ii[WS(rs, 52)] = FNMS(KP923879532, Tkw, Tkv); } } { E Tgk, Tl1, ThG, TkV, Ti0, TkN, Tis, TkH, TgH, TkO, ThJ, TkI, Tim, TiG, Tiq; E TiC, Th9, ThT, ThD, ThN, Ti7, Tl2, Tiv, TkW, Tif, TiF, Tip, Tiz, ThA, ThU; E ThE, ThQ; { E Tg8, TkT, Tgj, TkU, Tgd, Tgi; Tg8 = Tg4 + Tg7; TkT = TkE - TkD; Tgd = Tg9 + Tgc; Tgi = Tge - Tgh; Tgj = Tgd + Tgi; TkU = Tgi - Tgd; Tgk = FNMS(KP707106781, Tgj, Tg8); Tl1 = FNMS(KP707106781, TkU, TkT); ThG = FMA(KP707106781, Tgj, Tg8); TkV = FMA(KP707106781, TkU, TkT); } { E ThW, TkF, ThZ, TkG, ThX, ThY; ThW = Tg4 - Tg7; TkF = TkD + TkE; ThX = Tgc - Tg9; ThY = Tge + Tgh; ThZ = ThX - ThY; TkG = ThX + ThY; Ti0 = FMA(KP707106781, ThZ, ThW); TkN = FNMS(KP707106781, TkG, TkF); Tis = FNMS(KP707106781, ThZ, ThW); TkH = FMA(KP707106781, TkG, TkF); } { E Tgv, ThH, TgG, ThI; { E Tgp, Tgu, TgA, TgF; Tgp = Tgn + Tgo; Tgu = Tgq + Tgt; Tgv = FNMS(KP414213562, Tgu, Tgp); ThH = FMA(KP414213562, Tgp, Tgu); TgA = Tgy + Tgz; TgF = TgB + TgE; TgG = FMA(KP414213562, TgF, TgA); ThI = FNMS(KP414213562, TgA, TgF); } TgH = Tgv - TgG; TkO = ThI - ThH; ThJ = ThH + ThI; TkI = Tgv + TgG; } { E Tii, TiB, Til, TiA; { E Tig, Tih, Tij, Tik; Tig = Thr - Thu; Tih = Tho - Thj; Tii = FNMS(KP707106781, Tih, Tig); TiB = FMA(KP707106781, Tih, Tig); Tij = Thc - Thd; Tik = Thw - Thx; Til = FNMS(KP707106781, Tik, Tij); TiA = FMA(KP707106781, Tik, Tij); } Tim = FNMS(KP668178637, Til, Tii); TiG = FMA(KP198912367, TiA, TiB); Tiq = FMA(KP668178637, Tii, Til); TiC = FNMS(KP198912367, TiB, TiA); } { E TgZ, ThM, Th8, ThL; { E TgN, TgY, Th4, Th7; TgN = TgL + TgM; TgY = TgS + TgX; TgZ = FNMS(KP707106781, TgY, TgN); ThM = FMA(KP707106781, TgY, TgN); Th4 = Th0 + Th3; Th7 = Th5 + Th6; Th8 = FNMS(KP707106781, Th7, Th4); ThL = FMA(KP707106781, Th7, Th4); } Th9 = FMA(KP668178637, Th8, TgZ); ThT = FNMS(KP198912367, ThL, ThM); ThD = FNMS(KP668178637, TgZ, Th8); ThN = FMA(KP198912367, ThM, ThL); } { E Ti3, Tit, Ti6, Tiu; { E Ti1, Ti2, Ti4, Ti5; Ti1 = Tgn - Tgo; Ti2 = Tgq - Tgt; Ti3 = FMA(KP414213562, Ti2, Ti1); Tit = FNMS(KP414213562, Ti1, Ti2); Ti4 = Tgy - Tgz; Ti5 = TgB - TgE; Ti6 = FNMS(KP414213562, Ti5, Ti4); Tiu = FMA(KP414213562, Ti4, Ti5); } Ti7 = Ti3 - Ti6; Tl2 = Ti3 + Ti6; Tiv = Tit + Tiu; TkW = Tiu - Tit; } { E Tib, Tiy, Tie, Tix; { E Ti9, Tia, Tic, Tid; Ti9 = Th0 - Th3; Tia = TgX - TgS; Tib = FNMS(KP707106781, Tia, Ti9); Tiy = FMA(KP707106781, Tia, Ti9); Tic = TgL - TgM; Tid = Th5 - Th6; Tie = FNMS(KP707106781, Tid, Tic); Tix = FMA(KP707106781, Tid, Tic); } Tif = FMA(KP668178637, Tie, Tib); TiF = FNMS(KP198912367, Tix, Tiy); Tip = FNMS(KP668178637, Tib, Tie); Tiz = FMA(KP198912367, Tiy, Tix); } { E Thq, ThP, Thz, ThO; { E The, Thp, Thv, Thy; The = Thc + Thd; Thp = Thj + Tho; Thq = FNMS(KP707106781, Thp, The); ThP = FMA(KP707106781, Thp, The); Thv = Thr + Thu; Thy = Thw + Thx; Thz = FNMS(KP707106781, Thy, Thv); ThO = FMA(KP707106781, Thy, Thv); } ThA = FNMS(KP668178637, Thz, Thq); ThU = FMA(KP198912367, ThO, ThP); ThE = FMA(KP668178637, Thq, Thz); ThQ = FNMS(KP198912367, ThP, ThO); } { E TgI, ThB, TkP, TkQ; TgI = FMA(KP923879532, TgH, Tgk); ThB = Th9 - ThA; ri[WS(rs, 42)] = FNMS(KP831469612, ThB, TgI); ri[WS(rs, 10)] = FMA(KP831469612, ThB, TgI); TkP = FMA(KP923879532, TkO, TkN); TkQ = ThE - ThD; ii[WS(rs, 10)] = FMA(KP831469612, TkQ, TkP); ii[WS(rs, 42)] = FNMS(KP831469612, TkQ, TkP); } { E ThC, ThF, TkR, TkS; ThC = FNMS(KP923879532, TgH, Tgk); ThF = ThD + ThE; ri[WS(rs, 26)] = FNMS(KP831469612, ThF, ThC); ri[WS(rs, 58)] = FMA(KP831469612, ThF, ThC); TkR = FNMS(KP923879532, TkO, TkN); TkS = Th9 + ThA; ii[WS(rs, 26)] = FNMS(KP831469612, TkS, TkR); ii[WS(rs, 58)] = FMA(KP831469612, TkS, TkR); } { E ThK, ThR, TkJ, TkK; ThK = FMA(KP923879532, ThJ, ThG); ThR = ThN + ThQ; ri[WS(rs, 34)] = FNMS(KP980785280, ThR, ThK); ri[WS(rs, 2)] = FMA(KP980785280, ThR, ThK); TkJ = FMA(KP923879532, TkI, TkH); TkK = ThT + ThU; ii[WS(rs, 2)] = FMA(KP980785280, TkK, TkJ); ii[WS(rs, 34)] = FNMS(KP980785280, TkK, TkJ); } { E ThS, ThV, TkL, TkM; ThS = FNMS(KP923879532, ThJ, ThG); ThV = ThT - ThU; ri[WS(rs, 50)] = FNMS(KP980785280, ThV, ThS); ri[WS(rs, 18)] = FMA(KP980785280, ThV, ThS); TkL = FNMS(KP923879532, TkI, TkH); TkM = ThQ - ThN; ii[WS(rs, 18)] = FMA(KP980785280, TkM, TkL); ii[WS(rs, 50)] = FNMS(KP980785280, TkM, TkL); } { E Ti8, Tin, TkX, TkY; Ti8 = FMA(KP923879532, Ti7, Ti0); Tin = Tif + Tim; ri[WS(rs, 38)] = FNMS(KP831469612, Tin, Ti8); ri[WS(rs, 6)] = FMA(KP831469612, Tin, Ti8); TkX = FMA(KP923879532, TkW, TkV); TkY = Tip + Tiq; ii[WS(rs, 6)] = FMA(KP831469612, TkY, TkX); ii[WS(rs, 38)] = FNMS(KP831469612, TkY, TkX); } { E Tio, Tir, TkZ, Tl0; Tio = FNMS(KP923879532, Ti7, Ti0); Tir = Tip - Tiq; ri[WS(rs, 54)] = FNMS(KP831469612, Tir, Tio); ri[WS(rs, 22)] = FMA(KP831469612, Tir, Tio); TkZ = FNMS(KP923879532, TkW, TkV); Tl0 = Tim - Tif; ii[WS(rs, 22)] = FMA(KP831469612, Tl0, TkZ); ii[WS(rs, 54)] = FNMS(KP831469612, Tl0, TkZ); } { E Tiw, TiD, Tl3, Tl4; Tiw = FNMS(KP923879532, Tiv, Tis); TiD = Tiz - TiC; ri[WS(rs, 46)] = FNMS(KP980785280, TiD, Tiw); ri[WS(rs, 14)] = FMA(KP980785280, TiD, Tiw); Tl3 = FNMS(KP923879532, Tl2, Tl1); Tl4 = TiG - TiF; ii[WS(rs, 14)] = FMA(KP980785280, Tl4, Tl3); ii[WS(rs, 46)] = FNMS(KP980785280, Tl4, Tl3); } { E TiE, TiH, Tl5, Tl6; TiE = FMA(KP923879532, Tiv, Tis); TiH = TiF + TiG; ri[WS(rs, 30)] = FNMS(KP980785280, TiH, TiE); ri[WS(rs, 62)] = FMA(KP980785280, TiH, TiE); Tl5 = FMA(KP923879532, Tl2, Tl1); Tl6 = Tiz + TiC; ii[WS(rs, 30)] = FNMS(KP980785280, Tl6, Tl5); ii[WS(rs, 62)] = FMA(KP980785280, Tl6, Tl5); } } { E Tar, TlO, TcT, TlI, TbB, Td3, TcN, TcX, Tdw, TdQ, TdA, TdM, Tdp, TdP, Tdz; E TdJ, Tdh, Tm2, TdF, TlW, TcK, Td4, TcO, Td0, T9i, TlV, Tm1, TcQ, Tda, TlH; E TlN, TdC; { E T9R, TcR, Taq, TcS; { E T9F, T9Q, Tae, Tap; T9F = FNMS(KP707106781, T9E, T9p); T9Q = FNMS(KP707106781, T9P, T9M); T9R = FNMS(KP668178637, T9Q, T9F); TcR = FMA(KP668178637, T9F, T9Q); Tae = FNMS(KP707106781, Tad, T9Y); Tap = FNMS(KP707106781, Tao, Tal); Taq = FMA(KP668178637, Tap, Tae); TcS = FNMS(KP668178637, Tae, Tap); } Tar = T9R - Taq; TlO = TcS - TcR; TcT = TcR + TcS; TlI = T9R + Taq; } { E Tbl, TcW, TbA, TcV; { E TaP, Tbk, Tbw, Tbz; TaP = FNMS(KP707106781, TaO, Taz); Tbk = Tb4 - Tbj; Tbl = FNMS(KP923879532, Tbk, TaP); TcW = FMA(KP923879532, Tbk, TaP); Tbw = FNMS(KP707106781, Tbv, Tbs); Tbz = Tbx - Tby; TbA = FNMS(KP923879532, Tbz, Tbw); TcV = FMA(KP923879532, Tbz, Tbw); } TbB = FMA(KP534511135, TbA, Tbl); Td3 = FNMS(KP303346683, TcV, TcW); TcN = FNMS(KP534511135, Tbl, TbA); TcX = FMA(KP303346683, TcW, TcV); } { E Tds, TdL, Tdv, TdK; { E Tdq, Tdr, Tdt, Tdu; Tdq = FMA(KP707106781, TcE, TcB); Tdr = Tcs + Tcd; Tds = FNMS(KP923879532, Tdr, Tdq); TdL = FMA(KP923879532, Tdr, Tdq); Tdt = FMA(KP707106781, TbX, TbI); Tdu = TcG + TcH; Tdv = FNMS(KP923879532, Tdu, Tdt); TdK = FMA(KP923879532, Tdu, Tdt); } Tdw = FNMS(KP820678790, Tdv, Tds); TdQ = FMA(KP098491403, TdK, TdL); TdA = FMA(KP820678790, Tds, Tdv); TdM = FNMS(KP098491403, TdL, TdK); } { E Tdl, TdI, Tdo, TdH; { E Tdj, Tdk, Tdm, Tdn; Tdj = FMA(KP707106781, Tbv, Tbs); Tdk = Tbj + Tb4; Tdl = FNMS(KP923879532, Tdk, Tdj); TdI = FMA(KP923879532, Tdk, Tdj); Tdm = FMA(KP707106781, TaO, Taz); Tdn = Tbx + Tby; Tdo = FNMS(KP923879532, Tdn, Tdm); TdH = FMA(KP923879532, Tdn, Tdm); } Tdp = FMA(KP820678790, Tdo, Tdl); TdP = FNMS(KP098491403, TdH, TdI); Tdz = FNMS(KP820678790, Tdl, Tdo); TdJ = FMA(KP098491403, TdI, TdH); } { E Tdd, TdD, Tdg, TdE; { E Tdb, Tdc, Tde, Tdf; Tdb = FMA(KP707106781, T9E, T9p); Tdc = FMA(KP707106781, T9P, T9M); Tdd = FMA(KP198912367, Tdc, Tdb); TdD = FNMS(KP198912367, Tdb, Tdc); Tde = FMA(KP707106781, Tad, T9Y); Tdf = FMA(KP707106781, Tao, Tal); Tdg = FNMS(KP198912367, Tdf, Tde); TdE = FMA(KP198912367, Tde, Tdf); } Tdh = Tdd - Tdg; Tm2 = Tdd + Tdg; TdF = TdD + TdE; TlW = TdE - TdD; } { E Tcu, TcZ, TcJ, TcY; { E TbY, Tct, TcF, TcI; TbY = FNMS(KP707106781, TbX, TbI); Tct = Tcd - Tcs; Tcu = FNMS(KP923879532, Tct, TbY); TcZ = FMA(KP923879532, Tct, TbY); TcF = FNMS(KP707106781, TcE, TcB); TcI = TcG - TcH; TcJ = FNMS(KP923879532, TcI, TcF); TcY = FMA(KP923879532, TcI, TcF); } TcK = FNMS(KP534511135, TcJ, Tcu); Td4 = FMA(KP303346683, TcY, TcZ); TcO = FMA(KP534511135, Tcu, TcJ); Td0 = FNMS(KP303346683, TcZ, TcY); } { E T8M, Td6, TlF, TlT, T9h, TlU, Td9, TlG, T8L, TlE; T8L = T8D - T8K; T8M = FMA(KP707106781, T8L, T8w); Td6 = FNMS(KP707106781, T8L, T8w); TlE = TdU - TdT; TlF = FMA(KP707106781, TlE, TlD); TlT = FNMS(KP707106781, TlE, TlD); { E T91, T9g, Td7, Td8; T91 = FMA(KP414213562, T90, T8T); T9g = FNMS(KP414213562, T9f, T98); T9h = T91 - T9g; TlU = T91 + T9g; Td7 = FNMS(KP414213562, T8T, T90); Td8 = FMA(KP414213562, T98, T9f); Td9 = Td7 + Td8; TlG = Td8 - Td7; } T9i = FNMS(KP923879532, T9h, T8M); TlV = FNMS(KP923879532, TlU, TlT); Tm1 = FMA(KP923879532, TlU, TlT); TcQ = FMA(KP923879532, T9h, T8M); Tda = FNMS(KP923879532, Td9, Td6); TlH = FMA(KP923879532, TlG, TlF); TlN = FNMS(KP923879532, TlG, TlF); TdC = FMA(KP923879532, Td9, Td6); } { E Tas, TcL, TlP, TlQ; Tas = FMA(KP831469612, Tar, T9i); TcL = TbB - TcK; ri[WS(rs, 43)] = FNMS(KP881921264, TcL, Tas); ri[WS(rs, 11)] = FMA(KP881921264, TcL, Tas); TlP = FMA(KP831469612, TlO, TlN); TlQ = TcO - TcN; ii[WS(rs, 11)] = FMA(KP881921264, TlQ, TlP); ii[WS(rs, 43)] = FNMS(KP881921264, TlQ, TlP); } { E TcM, TcP, TlR, TlS; TcM = FNMS(KP831469612, Tar, T9i); TcP = TcN + TcO; ri[WS(rs, 27)] = FNMS(KP881921264, TcP, TcM); ri[WS(rs, 59)] = FMA(KP881921264, TcP, TcM); TlR = FNMS(KP831469612, TlO, TlN); TlS = TbB + TcK; ii[WS(rs, 27)] = FNMS(KP881921264, TlS, TlR); ii[WS(rs, 59)] = FMA(KP881921264, TlS, TlR); } { E TcU, Td1, TlJ, TlK; TcU = FMA(KP831469612, TcT, TcQ); Td1 = TcX + Td0; ri[WS(rs, 35)] = FNMS(KP956940335, Td1, TcU); ri[WS(rs, 3)] = FMA(KP956940335, Td1, TcU); TlJ = FMA(KP831469612, TlI, TlH); TlK = Td3 + Td4; ii[WS(rs, 3)] = FMA(KP956940335, TlK, TlJ); ii[WS(rs, 35)] = FNMS(KP956940335, TlK, TlJ); } { E Td2, Td5, TlL, TlM; Td2 = FNMS(KP831469612, TcT, TcQ); Td5 = Td3 - Td4; ri[WS(rs, 51)] = FNMS(KP956940335, Td5, Td2); ri[WS(rs, 19)] = FMA(KP956940335, Td5, Td2); TlL = FNMS(KP831469612, TlI, TlH); TlM = Td0 - TcX; ii[WS(rs, 19)] = FMA(KP956940335, TlM, TlL); ii[WS(rs, 51)] = FNMS(KP956940335, TlM, TlL); } { E Tdi, Tdx, TlX, TlY; Tdi = FMA(KP980785280, Tdh, Tda); Tdx = Tdp + Tdw; ri[WS(rs, 39)] = FNMS(KP773010453, Tdx, Tdi); ri[WS(rs, 7)] = FMA(KP773010453, Tdx, Tdi); TlX = FMA(KP980785280, TlW, TlV); TlY = Tdz + TdA; ii[WS(rs, 7)] = FMA(KP773010453, TlY, TlX); ii[WS(rs, 39)] = FNMS(KP773010453, TlY, TlX); } { E Tdy, TdB, TlZ, Tm0; Tdy = FNMS(KP980785280, Tdh, Tda); TdB = Tdz - TdA; ri[WS(rs, 55)] = FNMS(KP773010453, TdB, Tdy); ri[WS(rs, 23)] = FMA(KP773010453, TdB, Tdy); TlZ = FNMS(KP980785280, TlW, TlV); Tm0 = Tdw - Tdp; ii[WS(rs, 23)] = FMA(KP773010453, Tm0, TlZ); ii[WS(rs, 55)] = FNMS(KP773010453, Tm0, TlZ); } { E TdG, TdN, Tm3, Tm4; TdG = FNMS(KP980785280, TdF, TdC); TdN = TdJ - TdM; ri[WS(rs, 47)] = FNMS(KP995184726, TdN, TdG); ri[WS(rs, 15)] = FMA(KP995184726, TdN, TdG); Tm3 = FNMS(KP980785280, Tm2, Tm1); Tm4 = TdQ - TdP; ii[WS(rs, 15)] = FMA(KP995184726, Tm4, Tm3); ii[WS(rs, 47)] = FNMS(KP995184726, Tm4, Tm3); } { E TdO, TdR, Tm5, Tm6; TdO = FMA(KP980785280, TdF, TdC); TdR = TdP + TdQ; ri[WS(rs, 31)] = FNMS(KP995184726, TdR, TdO); ri[WS(rs, 63)] = FMA(KP995184726, TdR, TdO); Tm5 = FMA(KP980785280, Tm2, Tm1); Tm6 = TdJ + TdM; ii[WS(rs, 31)] = FNMS(KP995184726, Tm6, Tm5); ii[WS(rs, 63)] = FMA(KP995184726, Tm6, Tm5); } } { E Tej, Tlk, Tf5, Tle, TeD, Tff, TeZ, Tf9, TfI, Tg2, TfM, TfY, TfB, Tg1, TfL; E TfV, Tft, Tly, TfR, Tls, TeW, Tfg, Tf0, Tfc, Te4, Tlr, Tlx, Tf2, Tfm, Tld; E Tlj, TfO; { E Teb, Tf3, Tei, Tf4; { E Te7, Tea, Tee, Teh; Te7 = FMA(KP707106781, Te6, Te5); Tea = FMA(KP707106781, Te9, Te8); Teb = FNMS(KP198912367, Tea, Te7); Tf3 = FMA(KP198912367, Te7, Tea); Tee = FMA(KP707106781, Ted, Tec); Teh = FMA(KP707106781, Teg, Tef); Tei = FMA(KP198912367, Teh, Tee); Tf4 = FNMS(KP198912367, Tee, Teh); } Tej = Teb - Tei; Tlk = Tf4 - Tf3; Tf5 = Tf3 + Tf4; Tle = Teb + Tei; } { E Tev, Tf8, TeC, Tf7; { E Ten, Teu, Tey, TeB; Ten = FMA(KP707106781, Tem, Tel); Teu = Teq + Tet; Tev = FNMS(KP923879532, Teu, Ten); Tf8 = FMA(KP923879532, Teu, Ten); Tey = FMA(KP707106781, Tex, Tew); TeB = Tez + TeA; TeC = FNMS(KP923879532, TeB, Tey); Tf7 = FMA(KP923879532, TeB, Tey); } TeD = FMA(KP820678790, TeC, Tev); Tff = FNMS(KP098491403, Tf7, Tf8); TeZ = FNMS(KP820678790, Tev, TeC); Tf9 = FMA(KP098491403, Tf8, Tf7); } { E TfE, TfX, TfH, TfW; { E TfC, TfD, TfF, TfG; TfC = FNMS(KP707106781, TeQ, TeP); TfD = TeM - TeJ; TfE = FNMS(KP923879532, TfD, TfC); TfX = FMA(KP923879532, TfD, TfC); TfF = FNMS(KP707106781, TeF, TeE); TfG = TeS - TeT; TfH = FNMS(KP923879532, TfG, TfF); TfW = FMA(KP923879532, TfG, TfF); } TfI = FNMS(KP534511135, TfH, TfE); Tg2 = FMA(KP303346683, TfW, TfX); TfM = FMA(KP534511135, TfE, TfH); TfY = FNMS(KP303346683, TfX, TfW); } { E Tfx, TfU, TfA, TfT; { E Tfv, Tfw, Tfy, Tfz; Tfv = FNMS(KP707106781, Tex, Tew); Tfw = Tet - Teq; Tfx = FNMS(KP923879532, Tfw, Tfv); TfU = FMA(KP923879532, Tfw, Tfv); Tfy = FNMS(KP707106781, Tem, Tel); Tfz = Tez - TeA; TfA = FNMS(KP923879532, Tfz, Tfy); TfT = FMA(KP923879532, Tfz, Tfy); } TfB = FMA(KP534511135, TfA, Tfx); Tg1 = FNMS(KP303346683, TfT, TfU); TfL = FNMS(KP534511135, Tfx, TfA); TfV = FMA(KP303346683, TfU, TfT); } { E Tfp, TfP, Tfs, TfQ; { E Tfn, Tfo, Tfq, Tfr; Tfn = FNMS(KP707106781, Te6, Te5); Tfo = FNMS(KP707106781, Te9, Te8); Tfp = FMA(KP668178637, Tfo, Tfn); TfP = FNMS(KP668178637, Tfn, Tfo); Tfq = FNMS(KP707106781, Ted, Tec); Tfr = FNMS(KP707106781, Teg, Tef); Tfs = FNMS(KP668178637, Tfr, Tfq); TfQ = FMA(KP668178637, Tfq, Tfr); } Tft = Tfp - Tfs; Tly = Tfp + Tfs; TfR = TfP + TfQ; Tls = TfQ - TfP; } { E TeO, Tfb, TeV, Tfa; { E TeG, TeN, TeR, TeU; TeG = FMA(KP707106781, TeF, TeE); TeN = TeJ + TeM; TeO = FNMS(KP923879532, TeN, TeG); Tfb = FMA(KP923879532, TeN, TeG); TeR = FMA(KP707106781, TeQ, TeP); TeU = TeS + TeT; TeV = FNMS(KP923879532, TeU, TeR); Tfa = FMA(KP923879532, TeU, TeR); } TeW = FNMS(KP820678790, TeV, TeO); Tfg = FMA(KP098491403, Tfa, Tfb); Tf0 = FMA(KP820678790, TeO, TeV); Tfc = FNMS(KP098491403, Tfb, Tfa); } { E TdW, Tfi, Tlb, Tlp, Te3, Tlq, Tfl, Tlc, TdV, Tla; TdV = TdT + TdU; TdW = FMA(KP707106781, TdV, TdS); Tfi = FNMS(KP707106781, TdV, TdS); Tla = T8D + T8K; Tlb = FMA(KP707106781, Tla, Tl9); Tlp = FNMS(KP707106781, Tla, Tl9); { E TdZ, Te2, Tfj, Tfk; TdZ = FMA(KP414213562, TdY, TdX); Te2 = FNMS(KP414213562, Te1, Te0); Te3 = TdZ + Te2; Tlq = Te2 - TdZ; Tfj = FNMS(KP414213562, TdX, TdY); Tfk = FMA(KP414213562, Te0, Te1); Tfl = Tfj - Tfk; Tlc = Tfj + Tfk; } Te4 = FNMS(KP923879532, Te3, TdW); Tlr = FMA(KP923879532, Tlq, Tlp); Tlx = FNMS(KP923879532, Tlq, Tlp); Tf2 = FMA(KP923879532, Te3, TdW); Tfm = FMA(KP923879532, Tfl, Tfi); Tld = FMA(KP923879532, Tlc, Tlb); Tlj = FNMS(KP923879532, Tlc, Tlb); TfO = FNMS(KP923879532, Tfl, Tfi); } { E Tek, TeX, Tll, Tlm; Tek = FMA(KP980785280, Tej, Te4); TeX = TeD - TeW; ri[WS(rs, 41)] = FNMS(KP773010453, TeX, Tek); ri[WS(rs, 9)] = FMA(KP773010453, TeX, Tek); Tll = FMA(KP980785280, Tlk, Tlj); Tlm = Tf0 - TeZ; ii[WS(rs, 9)] = FMA(KP773010453, Tlm, Tll); ii[WS(rs, 41)] = FNMS(KP773010453, Tlm, Tll); } { E TeY, Tf1, Tln, Tlo; TeY = FNMS(KP980785280, Tej, Te4); Tf1 = TeZ + Tf0; ri[WS(rs, 25)] = FNMS(KP773010453, Tf1, TeY); ri[WS(rs, 57)] = FMA(KP773010453, Tf1, TeY); Tln = FNMS(KP980785280, Tlk, Tlj); Tlo = TeD + TeW; ii[WS(rs, 25)] = FNMS(KP773010453, Tlo, Tln); ii[WS(rs, 57)] = FMA(KP773010453, Tlo, Tln); } { E Tf6, Tfd, Tlf, Tlg; Tf6 = FMA(KP980785280, Tf5, Tf2); Tfd = Tf9 + Tfc; ri[WS(rs, 33)] = FNMS(KP995184726, Tfd, Tf6); ri[WS(rs, 1)] = FMA(KP995184726, Tfd, Tf6); Tlf = FMA(KP980785280, Tle, Tld); Tlg = Tff + Tfg; ii[WS(rs, 1)] = FMA(KP995184726, Tlg, Tlf); ii[WS(rs, 33)] = FNMS(KP995184726, Tlg, Tlf); } { E Tfe, Tfh, Tlh, Tli; Tfe = FNMS(KP980785280, Tf5, Tf2); Tfh = Tff - Tfg; ri[WS(rs, 49)] = FNMS(KP995184726, Tfh, Tfe); ri[WS(rs, 17)] = FMA(KP995184726, Tfh, Tfe); Tlh = FNMS(KP980785280, Tle, Tld); Tli = Tfc - Tf9; ii[WS(rs, 17)] = FMA(KP995184726, Tli, Tlh); ii[WS(rs, 49)] = FNMS(KP995184726, Tli, Tlh); } { E Tfu, TfJ, Tlt, Tlu; Tfu = FMA(KP831469612, Tft, Tfm); TfJ = TfB + TfI; ri[WS(rs, 37)] = FNMS(KP881921264, TfJ, Tfu); ri[WS(rs, 5)] = FMA(KP881921264, TfJ, Tfu); Tlt = FMA(KP831469612, Tls, Tlr); Tlu = TfL + TfM; ii[WS(rs, 5)] = FMA(KP881921264, Tlu, Tlt); ii[WS(rs, 37)] = FNMS(KP881921264, Tlu, Tlt); } { E TfK, TfN, Tlv, Tlw; TfK = FNMS(KP831469612, Tft, Tfm); TfN = TfL - TfM; ri[WS(rs, 53)] = FNMS(KP881921264, TfN, TfK); ri[WS(rs, 21)] = FMA(KP881921264, TfN, TfK); Tlv = FNMS(KP831469612, Tls, Tlr); Tlw = TfI - TfB; ii[WS(rs, 21)] = FMA(KP881921264, Tlw, Tlv); ii[WS(rs, 53)] = FNMS(KP881921264, Tlw, Tlv); } { E TfS, TfZ, Tlz, TlA; TfS = FNMS(KP831469612, TfR, TfO); TfZ = TfV - TfY; ri[WS(rs, 45)] = FNMS(KP956940335, TfZ, TfS); ri[WS(rs, 13)] = FMA(KP956940335, TfZ, TfS); Tlz = FNMS(KP831469612, Tly, Tlx); TlA = Tg2 - Tg1; ii[WS(rs, 13)] = FMA(KP956940335, TlA, Tlz); ii[WS(rs, 45)] = FNMS(KP956940335, TlA, Tlz); } { E Tg0, Tg3, TlB, TlC; Tg0 = FMA(KP831469612, TfR, TfO); Tg3 = Tg1 + Tg2; ri[WS(rs, 29)] = FNMS(KP956940335, Tg3, Tg0); ri[WS(rs, 61)] = FMA(KP956940335, Tg3, Tg0); TlB = FMA(KP831469612, Tly, Tlx); TlC = TfV + TfY; ii[WS(rs, 29)] = FNMS(KP956940335, TlC, TlB); ii[WS(rs, 61)] = FMA(KP956940335, TlC, TlB); } } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_CEXP, 0, 9}, {TW_CEXP, 0, 27}, {TW_CEXP, 0, 63}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {520, 206, 634, 0}, 0, 0, 0 }; void X(codelet_t2_64) (planner *p) { X(kdft_dit_register) (p, t2_64, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */ /* * This function contains 1154 FP additions, 660 FP multiplications, * (or, 880 additions, 386 multiplications, 274 fused multiply/add), * 302 stack variables, 15 constants, and 256 memory accesses */ #include "dft/scalar/t.h" static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { E T2, T5, T3, T6, Te, T9, TP, T3e, T1e, T39, T3c, TT, T1a, T37, T8; E Tw, Td, Ty, Tm, Th, T1C, T3K, T1V, T3x, T3I, T1G, T1R, T3v, T2m, T2q; E T5Y, T6u, T53, T5B, T62, T6w, T57, T5D, T2V, T2X, Tg, TE, T3Y, T3V, T3j; E Tl, TA, T3g, T1j, T1t, TV, T2C, T2z, T1u, TZ, T1h, To, T1p, T6j, T6H; E Ts, T1l, T6l, T6F, T2P, T4b, T4x, T5i, T2R, T49, T4z, T5g, TG, T4k, T4m; E TK, T21, T3O, T3Q, T25, TW, T10, T11, T79, T6X, T5M, T6b, T1v, T30, T69; E T77, T13, T2F, T2D, T6p, T6O, T1x, T2a, T2f, T6V, T28, T6r, T2h, T6Q, T32; E T5K, T5w, T4G, T4Q, T3m, T4h, T4I, T5y, T3k, T4f, T41, T4S, T4Y, T3q, T3D; E T3F, T5r, T3s, T4W, T3Z, T5p; { E Ta, Tj, Tx, TC, Tf, Tk, Tz, TD, T1B, T1E, T2o, T2l, T1T, T1Q, T1A; E T1F, T2p, T2k, T1U, T1P; { E T4, T1d, T19, Tb, T1c, T7, Tc, T18, TR, TO, TS, TN; T2 = W[0]; T5 = W[1]; T3 = W[2]; T6 = W[3]; Te = W[5]; T9 = W[4]; T4 = T2 * T3; T1d = T5 * T9; T19 = T5 * Te; Tb = T2 * T6; T1c = T2 * Te; T7 = T5 * T6; Tc = T5 * T3; T18 = T2 * T9; TR = T3 * Te; TO = T6 * Te; TS = T6 * T9; TN = T3 * T9; TP = TN - TO; T3e = TR - TS; T1e = T1c - T1d; T39 = T1c + T1d; T3c = TN + TO; TT = TR + TS; T1a = T18 + T19; T37 = T18 - T19; T8 = T4 - T7; Ta = T8 * T9; Tj = T8 * Te; Tw = T4 + T7; Tx = Tw * T9; TC = Tw * Te; Td = Tb + Tc; Tf = Td * Te; Tk = Td * T9; Ty = Tb - Tc; Tz = Ty * Te; TD = Ty * T9; Tm = W[7]; T1B = T6 * Tm; T1E = T3 * Tm; T2o = T2 * Tm; T2l = T5 * Tm; T1T = T9 * Tm; T1Q = Te * Tm; Th = W[6]; T1A = T3 * Th; T1F = T6 * Th; T2p = T5 * Th; T2k = T2 * Th; T1U = Te * Th; T1P = T9 * Th; } T1C = T1A + T1B; T3K = T1E + T1F; T1V = T1T + T1U; T3x = T2o - T2p; T3I = T1A - T1B; T1G = T1E - T1F; T1R = T1P - T1Q; { E T5W, T5X, T55, T56; T3v = T2k + T2l; T2m = T2k - T2l; T2q = T2o + T2p; T5W = T8 * Th; T5X = Td * Tm; T5Y = T5W - T5X; T6u = T5W + T5X; { E T51, T52, T60, T61; T51 = Tw * Th; T52 = Ty * Tm; T53 = T51 + T52; T5B = T51 - T52; T60 = T8 * Tm; T61 = Td * Th; T62 = T60 + T61; T6w = T60 - T61; } T55 = Tw * Tm; T56 = Ty * Th; T57 = T55 - T56; T5D = T55 + T56; { E Ti, Tq, TF, TJ, T3W, T3X, T3T, T3U, T3h, T3i, Tn, Tr, TB, TI, T3d; E T3f, T1k, T1o, T1Z, T23, TQ, TU, T2A, T2B, T2x, T2y, T20, T24, TX, TY; E T1i, T1n; T2V = T1P + T1Q; T2X = T1T - T1U; Tg = Ta + Tf; Ti = Tg * Th; Tq = Tg * Tm; TE = TC + TD; TF = TE * Tm; TJ = TE * Th; T3W = T37 * Tm; T3X = T39 * Th; T3Y = T3W - T3X; T3T = T37 * Th; T3U = T39 * Tm; T3V = T3T + T3U; T3h = T3c * Tm; T3i = T3e * Th; T3j = T3h - T3i; Tl = Tj - Tk; Tn = Tl * Tm; Tr = Tl * Th; TA = Tx - Tz; TB = TA * Th; TI = TA * Tm; T3d = T3c * Th; T3f = T3e * Tm; T3g = T3d + T3f; T1j = Tj + Tk; T1k = T1j * Tm; T1o = T1j * Th; T1t = Tx + Tz; T1Z = T1t * Th; T23 = T1t * Tm; TQ = TP * Th; TU = TT * Tm; TV = TQ + TU; T2A = T1a * Tm; T2B = T1e * Th; T2C = T2A - T2B; T2x = T1a * Th; T2y = T1e * Tm; T2z = T2x + T2y; T1u = TC - TD; T20 = T1u * Tm; T24 = T1u * Th; TX = TP * Tm; TY = TT * Th; TZ = TX - TY; T1h = Ta - Tf; T1i = T1h * Th; T1n = T1h * Tm; To = Ti - Tn; T1p = T1n + T1o; T6j = TQ - TU; T6H = T2A + T2B; Ts = Tq + Tr; T1l = T1i - T1k; T6l = TX + TY; T6F = T2x - T2y; T2P = T1Z - T20; T4b = TI + TJ; T4x = T3d - T3f; T5i = T3W + T3X; T2R = T23 + T24; T49 = TB - TF; T4z = T3h + T3i; T5g = T3T - T3U; TG = TB + TF; T4k = Ti + Tn; T4m = Tq - Tr; TK = TI - TJ; T21 = T1Z + T20; T3O = T1i + T1k; T3Q = T1n - T1o; T25 = T23 - T24; TW = W[8]; T10 = W[9]; T11 = FMA(TV, TW, TZ * T10); T79 = FNMS(T25, TW, T21 * T10); T6X = FNMS(Td, TW, T8 * T10); T5M = FNMS(T2X, TW, T2V * T10); T6b = FNMS(TK, TW, TG * T10); T1v = FMA(T1t, TW, T1u * T10); T30 = FMA(T1h, TW, T1j * T10); T69 = FMA(TG, TW, TK * T10); T77 = FMA(T21, TW, T25 * T10); T13 = FNMS(TZ, TW, TV * T10); T2F = FNMS(T2C, TW, T2z * T10); T2D = FMA(T2z, TW, T2C * T10); T6p = FMA(T1a, TW, T1e * T10); T6O = FMA(TP, TW, TT * T10); T1x = FNMS(T1u, TW, T1t * T10); T2a = FNMS(TE, TW, TA * T10); T2f = FMA(T3, TW, T6 * T10); T6V = FMA(T8, TW, Td * T10); T28 = FMA(TA, TW, TE * T10); T6r = FNMS(T1e, TW, T1a * T10); T2h = FNMS(T6, TW, T3 * T10); T6Q = FNMS(TT, TW, TP * T10); T32 = FNMS(T1j, TW, T1h * T10); T5K = FMA(T2V, TW, T2X * T10); T5w = FMA(Tw, TW, Ty * T10); T4G = FMA(T3O, TW, T3Q * T10); T4Q = FMA(T4k, TW, T4m * T10); T3m = FNMS(T3j, TW, T3g * T10); T4h = FNMS(Te, TW, T9 * T10); T4I = FNMS(T3Q, TW, T3O * T10); T5y = FNMS(Ty, TW, Tw * T10); T3k = FMA(T3g, TW, T3j * T10); T4f = FMA(T9, TW, Te * T10); T41 = FNMS(T3Y, TW, T3V * T10); T4S = FNMS(T4m, TW, T4k * T10); T4Y = FNMS(T3e, TW, T3c * T10); T3q = FMA(Tg, TW, Tl * T10); T3D = FMA(T2, TW, T5 * T10); T3F = FNMS(T5, TW, T2 * T10); T5r = FNMS(T39, TW, T37 * T10); T3s = FNMS(Tl, TW, Tg * T10); T4W = FMA(T3c, TW, T3e * T10); T3Z = FMA(T3V, TW, T3Y * T10); T5p = FMA(T37, TW, T39 * T10); } } } { E T17, TdV, Tj3, Tjx, T7l, TbJ, Ti3, Tix, T1K, Tiw, TdY, ThY, T7w, Tj0, TbM; E Tjw, T2e, TgA, T7I, TaY, TbQ, Tda, Te4, TfO, T2J, TgB, T7T, TaZ, TbT, Tdb; E Te9, TfP, T36, T3B, TgH, TgE, TgF, TgG, T80, TbW, Tel, TfT, T8b, Tc0, T8k; E TbX, Teg, TfS, T8h, TbZ, T45, T4q, TgJ, TgK, TgL, TgM, T8r, Tc6, Tew, TfW; E T8C, Tc4, T8L, Tc7, Ter, TfV, T8I, Tc3, T6B, Th1, Tfm, Tga, Th8, ThI, T9N; E Tcv, T9Y, TcH, Tav, Tcw, Tf5, Tg7, Tas, TcG, T5c, TgV, TeV, Tg0, TgS, ThD; E T8U, Tcc, T95, Tco, T9C, Tcd, TeE, Tg3, T9z, Tcn, T5R, TgT, TeO, TeW, TgY; E ThE, T9h, T9F, T9s, T9E, Tck, Tcq, TeJ, TeX, Tch, Tcr, T7e, Th9, Tff, Tfn; E Th4, ThJ, Taa, Tay, Tal, Tax, TcD, TcJ, Tfa, Tfo, TcA, TcK; { E T1, Ti1, Tu, Ti0, TM, T7i, T15, T7j, Tp, Tt; T1 = ri[0]; Ti1 = ii[0]; Tp = ri[WS(rs, 32)]; Tt = ii[WS(rs, 32)]; Tu = FMA(To, Tp, Ts * Tt); Ti0 = FNMS(Ts, Tp, To * Tt); { E TH, TL, T12, T14; TH = ri[WS(rs, 16)]; TL = ii[WS(rs, 16)]; TM = FMA(TG, TH, TK * TL); T7i = FNMS(TK, TH, TG * TL); T12 = ri[WS(rs, 48)]; T14 = ii[WS(rs, 48)]; T15 = FMA(T11, T12, T13 * T14); T7j = FNMS(T13, T12, T11 * T14); } { E Tv, T16, Tj1, Tj2; Tv = T1 + Tu; T16 = TM + T15; T17 = Tv + T16; TdV = Tv - T16; Tj1 = Ti1 - Ti0; Tj2 = TM - T15; Tj3 = Tj1 - Tj2; Tjx = Tj2 + Tj1; } { E T7h, T7k, ThZ, Ti2; T7h = T1 - Tu; T7k = T7i - T7j; T7l = T7h - T7k; TbJ = T7h + T7k; ThZ = T7i + T7j; Ti2 = Ti0 + Ti1; Ti3 = ThZ + Ti2; Tix = Ti2 - ThZ; } } { E T1g, T7m, T1r, T7n, T7o, T7p, T1z, T7s, T1I, T7t, T7r, T7u; { E T1b, T1f, T1m, T1q; T1b = ri[WS(rs, 8)]; T1f = ii[WS(rs, 8)]; T1g = FMA(T1a, T1b, T1e * T1f); T7m = FNMS(T1e, T1b, T1a * T1f); T1m = ri[WS(rs, 40)]; T1q = ii[WS(rs, 40)]; T1r = FMA(T1l, T1m, T1p * T1q); T7n = FNMS(T1p, T1m, T1l * T1q); } T7o = T7m - T7n; T7p = T1g - T1r; { E T1w, T1y, T1D, T1H; T1w = ri[WS(rs, 56)]; T1y = ii[WS(rs, 56)]; T1z = FMA(T1v, T1w, T1x * T1y); T7s = FNMS(T1x, T1w, T1v * T1y); T1D = ri[WS(rs, 24)]; T1H = ii[WS(rs, 24)]; T1I = FMA(T1C, T1D, T1G * T1H); T7t = FNMS(T1G, T1D, T1C * T1H); } T7r = T1z - T1I; T7u = T7s - T7t; { E T1s, T1J, TdW, TdX; T1s = T1g + T1r; T1J = T1z + T1I; T1K = T1s + T1J; Tiw = T1J - T1s; TdW = T7m + T7n; TdX = T7s + T7t; TdY = TdW - TdX; ThY = TdW + TdX; } { E T7q, T7v, TbK, TbL; T7q = T7o - T7p; T7v = T7r + T7u; T7w = KP707106781 * (T7q - T7v); Tj0 = KP707106781 * (T7q + T7v); TbK = T7p + T7o; TbL = T7r - T7u; TbM = KP707106781 * (TbK + TbL); Tjw = KP707106781 * (TbL - TbK); } } { E T1Y, Te0, T7A, T7D, T2d, Te1, T7B, T7G, T7C, T7H; { E T1O, T7y, T1X, T7z; { E T1M, T1N, T1S, T1W; T1M = ri[WS(rs, 4)]; T1N = ii[WS(rs, 4)]; T1O = FMA(T8, T1M, Td * T1N); T7y = FNMS(Td, T1M, T8 * T1N); T1S = ri[WS(rs, 36)]; T1W = ii[WS(rs, 36)]; T1X = FMA(T1R, T1S, T1V * T1W); T7z = FNMS(T1V, T1S, T1R * T1W); } T1Y = T1O + T1X; Te0 = T7y + T7z; T7A = T7y - T7z; T7D = T1O - T1X; } { E T27, T7E, T2c, T7F; { E T22, T26, T29, T2b; T22 = ri[WS(rs, 20)]; T26 = ii[WS(rs, 20)]; T27 = FMA(T21, T22, T25 * T26); T7E = FNMS(T25, T22, T21 * T26); T29 = ri[WS(rs, 52)]; T2b = ii[WS(rs, 52)]; T2c = FMA(T28, T29, T2a * T2b); T7F = FNMS(T2a, T29, T28 * T2b); } T2d = T27 + T2c; Te1 = T7E + T7F; T7B = T27 - T2c; T7G = T7E - T7F; } T2e = T1Y + T2d; TgA = Te0 + Te1; T7C = T7A + T7B; T7H = T7D - T7G; T7I = FNMS(KP923879532, T7H, KP382683432 * T7C); TaY = FMA(KP923879532, T7C, KP382683432 * T7H); { E TbO, TbP, Te2, Te3; TbO = T7A - T7B; TbP = T7D + T7G; TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO); Tda = FMA(KP382683432, TbO, KP923879532 * TbP); Te2 = Te0 - Te1; Te3 = T1Y - T2d; Te4 = Te2 - Te3; TfO = Te3 + Te2; } } { E T2t, Te6, T7L, T7O, T2I, Te7, T7M, T7R, T7N, T7S; { E T2j, T7J, T2s, T7K; { E T2g, T2i, T2n, T2r; T2g = ri[WS(rs, 60)]; T2i = ii[WS(rs, 60)]; T2j = FMA(T2f, T2g, T2h * T2i); T7J = FNMS(T2h, T2g, T2f * T2i); T2n = ri[WS(rs, 28)]; T2r = ii[WS(rs, 28)]; T2s = FMA(T2m, T2n, T2q * T2r); T7K = FNMS(T2q, T2n, T2m * T2r); } T2t = T2j + T2s; Te6 = T7J + T7K; T7L = T7J - T7K; T7O = T2j - T2s; } { E T2w, T7P, T2H, T7Q; { E T2u, T2v, T2E, T2G; T2u = ri[WS(rs, 12)]; T2v = ii[WS(rs, 12)]; T2w = FMA(TP, T2u, TT * T2v); T7P = FNMS(TT, T2u, TP * T2v); T2E = ri[WS(rs, 44)]; T2G = ii[WS(rs, 44)]; T2H = FMA(T2D, T2E, T2F * T2G); T7Q = FNMS(T2F, T2E, T2D * T2G); } T2I = T2w + T2H; Te7 = T7P + T7Q; T7M = T2w - T2H; T7R = T7P - T7Q; } T2J = T2t + T2I; TgB = Te6 + Te7; T7N = T7L + T7M; T7S = T7O - T7R; T7T = FMA(KP382683432, T7N, KP923879532 * T7S); TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S); { E TbR, TbS, Te5, Te8; TbR = T7L - T7M; TbS = T7O + T7R; TbT = FMA(KP923879532, TbR, KP382683432 * TbS); Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS); Te5 = T2t - T2I; Te8 = Te6 - Te7; Te9 = Te5 + Te8; TfP = Te5 - Te8; } } { E T2O, T7W, T2T, T7X, T2U, Tec, T2Z, T8e, T34, T8f, T35, Ted, T3p, Tei, T86; E T89, T3A, Tej, T81, T84; { E T2M, T2N, T2Q, T2S; T2M = ri[WS(rs, 2)]; T2N = ii[WS(rs, 2)]; T2O = FMA(Tw, T2M, Ty * T2N); T7W = FNMS(Ty, T2M, Tw * T2N); T2Q = ri[WS(rs, 34)]; T2S = ii[WS(rs, 34)]; T2T = FMA(T2P, T2Q, T2R * T2S); T7X = FNMS(T2R, T2Q, T2P * T2S); } T2U = T2O + T2T; Tec = T7W + T7X; { E T2W, T2Y, T31, T33; T2W = ri[WS(rs, 18)]; T2Y = ii[WS(rs, 18)]; T2Z = FMA(T2V, T2W, T2X * T2Y); T8e = FNMS(T2X, T2W, T2V * T2Y); T31 = ri[WS(rs, 50)]; T33 = ii[WS(rs, 50)]; T34 = FMA(T30, T31, T32 * T33); T8f = FNMS(T32, T31, T30 * T33); } T35 = T2Z + T34; Ted = T8e + T8f; { E T3b, T87, T3o, T88; { E T38, T3a, T3l, T3n; T38 = ri[WS(rs, 10)]; T3a = ii[WS(rs, 10)]; T3b = FMA(T37, T38, T39 * T3a); T87 = FNMS(T39, T38, T37 * T3a); T3l = ri[WS(rs, 42)]; T3n = ii[WS(rs, 42)]; T3o = FMA(T3k, T3l, T3m * T3n); T88 = FNMS(T3m, T3l, T3k * T3n); } T3p = T3b + T3o; Tei = T87 + T88; T86 = T3b - T3o; T89 = T87 - T88; } { E T3u, T82, T3z, T83; { E T3r, T3t, T3w, T3y; T3r = ri[WS(rs, 58)]; T3t = ii[WS(rs, 58)]; T3u = FMA(T3q, T3r, T3s * T3t); T82 = FNMS(T3s, T3r, T3q * T3t); T3w = ri[WS(rs, 26)]; T3y = ii[WS(rs, 26)]; T3z = FMA(T3v, T3w, T3x * T3y); T83 = FNMS(T3x, T3w, T3v * T3y); } T3A = T3u + T3z; Tej = T82 + T83; T81 = T3u - T3z; T84 = T82 - T83; } T36 = T2U + T35; T3B = T3p + T3A; TgH = T36 - T3B; TgE = Tec + Ted; TgF = Tei + Tej; TgG = TgE - TgF; { E T7Y, T7Z, Teh, Tek; T7Y = T7W - T7X; T7Z = T2Z - T34; T80 = T7Y + T7Z; TbW = T7Y - T7Z; Teh = T2U - T35; Tek = Tei - Tej; Tel = Teh - Tek; TfT = Teh + Tek; } { E T85, T8a, T8i, T8j; T85 = T81 - T84; T8a = T86 + T89; T8b = KP707106781 * (T85 - T8a); Tc0 = KP707106781 * (T8a + T85); T8i = T89 - T86; T8j = T81 + T84; T8k = KP707106781 * (T8i - T8j); TbX = KP707106781 * (T8i + T8j); } { E Tee, Tef, T8d, T8g; Tee = Tec - Ted; Tef = T3A - T3p; Teg = Tee - Tef; TfS = Tee + Tef; T8d = T2O - T2T; T8g = T8e - T8f; T8h = T8d - T8g; TbZ = T8d + T8g; } } { E T3H, T8n, T3M, T8o, T3N, Ten, T3S, T8F, T43, T8G, T44, Teo, T4e, Tet, T8x; E T8A, T4p, Teu, T8s, T8v; { E T3E, T3G, T3J, T3L; T3E = ri[WS(rs, 62)]; T3G = ii[WS(rs, 62)]; T3H = FMA(T3D, T3E, T3F * T3G); T8n = FNMS(T3F, T3E, T3D * T3G); T3J = ri[WS(rs, 30)]; T3L = ii[WS(rs, 30)]; T3M = FMA(T3I, T3J, T3K * T3L); T8o = FNMS(T3K, T3J, T3I * T3L); } T3N = T3H + T3M; Ten = T8n + T8o; { E T3P, T3R, T40, T42; T3P = ri[WS(rs, 14)]; T3R = ii[WS(rs, 14)]; T3S = FMA(T3O, T3P, T3Q * T3R); T8F = FNMS(T3Q, T3P, T3O * T3R); T40 = ri[WS(rs, 46)]; T42 = ii[WS(rs, 46)]; T43 = FMA(T3Z, T40, T41 * T42); T8G = FNMS(T41, T40, T3Z * T42); } T44 = T3S + T43; Teo = T8F + T8G; { E T48, T8y, T4d, T8z; { E T46, T47, T4a, T4c; T46 = ri[WS(rs, 6)]; T47 = ii[WS(rs, 6)]; T48 = FMA(T3c, T46, T3e * T47); T8y = FNMS(T3e, T46, T3c * T47); T4a = ri[WS(rs, 38)]; T4c = ii[WS(rs, 38)]; T4d = FMA(T49, T4a, T4b * T4c); T8z = FNMS(T4b, T4a, T49 * T4c); } T4e = T48 + T4d; Tet = T8y + T8z; T8x = T48 - T4d; T8A = T8y - T8z; } { E T4j, T8t, T4o, T8u; { E T4g, T4i, T4l, T4n; T4g = ri[WS(rs, 54)]; T4i = ii[WS(rs, 54)]; T4j = FMA(T4f, T4g, T4h * T4i); T8t = FNMS(T4h, T4g, T4f * T4i); T4l = ri[WS(rs, 22)]; T4n = ii[WS(rs, 22)]; T4o = FMA(T4k, T4l, T4m * T4n); T8u = FNMS(T4m, T4l, T4k * T4n); } T4p = T4j + T4o; Teu = T8t + T8u; T8s = T4j - T4o; T8v = T8t - T8u; } T45 = T3N + T44; T4q = T4e + T4p; TgJ = T45 - T4q; TgK = Ten + Teo; TgL = Tet + Teu; TgM = TgK - TgL; { E T8p, T8q, Tes, Tev; T8p = T8n - T8o; T8q = T3S - T43; T8r = T8p + T8q; Tc6 = T8p - T8q; Tes = T3N - T44; Tev = Tet - Teu; Tew = Tes - Tev; TfW = Tes + Tev; } { E T8w, T8B, T8J, T8K; T8w = T8s - T8v; T8B = T8x + T8A; T8C = KP707106781 * (T8w - T8B); Tc4 = KP707106781 * (T8B + T8w); T8J = T8A - T8x; T8K = T8s + T8v; T8L = KP707106781 * (T8J - T8K); Tc7 = KP707106781 * (T8J + T8K); } { E Tep, Teq, T8E, T8H; Tep = Ten - Teo; Teq = T4p - T4e; Ter = Tep - Teq; TfV = Tep + Teq; T8E = T3H - T3M; T8H = T8F - T8G; T8I = T8E - T8H; Tc3 = T8E + T8H; } } { E T5V, Tao, T64, Tap, T65, Tfi, T68, T9K, T6d, T9L, T6e, Tfj, T6o, Tf2, T9Q; E T9R, T6z, Tf3, T9T, T9W; { E T5T, T5U, T5Z, T63; T5T = ri[WS(rs, 63)]; T5U = ii[WS(rs, 63)]; T5V = FMA(TW, T5T, T10 * T5U); Tao = FNMS(T10, T5T, TW * T5U); T5Z = ri[WS(rs, 31)]; T63 = ii[WS(rs, 31)]; T64 = FMA(T5Y, T5Z, T62 * T63); Tap = FNMS(T62, T5Z, T5Y * T63); } T65 = T5V + T64; Tfi = Tao + Tap; { E T66, T67, T6a, T6c; T66 = ri[WS(rs, 15)]; T67 = ii[WS(rs, 15)]; T68 = FMA(TV, T66, TZ * T67); T9K = FNMS(TZ, T66, TV * T67); T6a = ri[WS(rs, 47)]; T6c = ii[WS(rs, 47)]; T6d = FMA(T69, T6a, T6b * T6c); T9L = FNMS(T6b, T6a, T69 * T6c); } T6e = T68 + T6d; Tfj = T9K + T9L; { E T6i, T9O, T6n, T9P; { E T6g, T6h, T6k, T6m; T6g = ri[WS(rs, 7)]; T6h = ii[WS(rs, 7)]; T6i = FMA(T1t, T6g, T1u * T6h); T9O = FNMS(T1u, T6g, T1t * T6h); T6k = ri[WS(rs, 39)]; T6m = ii[WS(rs, 39)]; T6n = FMA(T6j, T6k, T6l * T6m); T9P = FNMS(T6l, T6k, T6j * T6m); } T6o = T6i + T6n; Tf2 = T9O + T9P; T9Q = T9O - T9P; T9R = T6i - T6n; } { E T6t, T9U, T6y, T9V; { E T6q, T6s, T6v, T6x; T6q = ri[WS(rs, 55)]; T6s = ii[WS(rs, 55)]; T6t = FMA(T6p, T6q, T6r * T6s); T9U = FNMS(T6r, T6q, T6p * T6s); T6v = ri[WS(rs, 23)]; T6x = ii[WS(rs, 23)]; T6y = FMA(T6u, T6v, T6w * T6x); T9V = FNMS(T6w, T6v, T6u * T6x); } T6z = T6t + T6y; Tf3 = T9U + T9V; T9T = T6t - T6y; T9W = T9U - T9V; } { E T6f, T6A, Tfk, Tfl; T6f = T65 + T6e; T6A = T6o + T6z; T6B = T6f + T6A; Th1 = T6f - T6A; Tfk = Tfi - Tfj; Tfl = T6z - T6o; Tfm = Tfk - Tfl; Tga = Tfk + Tfl; } { E Th6, Th7, T9J, T9M; Th6 = Tfi + Tfj; Th7 = Tf2 + Tf3; Th8 = Th6 - Th7; ThI = Th6 + Th7; T9J = T5V - T64; T9M = T9K - T9L; T9N = T9J - T9M; Tcv = T9J + T9M; } { E T9S, T9X, Tat, Tau; T9S = T9Q - T9R; T9X = T9T + T9W; T9Y = KP707106781 * (T9S - T9X); TcH = KP707106781 * (T9S + T9X); Tat = T9T - T9W; Tau = T9R + T9Q; Tav = KP707106781 * (Tat - Tau); Tcw = KP707106781 * (Tau + Tat); } { E Tf1, Tf4, Taq, Tar; Tf1 = T65 - T6e; Tf4 = Tf2 - Tf3; Tf5 = Tf1 - Tf4; Tg7 = Tf1 + Tf4; Taq = Tao - Tap; Tar = T68 - T6d; Tas = Taq + Tar; TcG = Taq - Tar; } } { E T4w, T8Q, T4B, T8R, T4C, TeA, T4F, T9w, T4K, T9x, T4L, TeB, T4V, TeS, T90; E T93, T5a, TeT, T8V, T8Y; { E T4u, T4v, T4y, T4A; T4u = ri[WS(rs, 1)]; T4v = ii[WS(rs, 1)]; T4w = FMA(T2, T4u, T5 * T4v); T8Q = FNMS(T5, T4u, T2 * T4v); T4y = ri[WS(rs, 33)]; T4A = ii[WS(rs, 33)]; T4B = FMA(T4x, T4y, T4z * T4A); T8R = FNMS(T4z, T4y, T4x * T4A); } T4C = T4w + T4B; TeA = T8Q + T8R; { E T4D, T4E, T4H, T4J; T4D = ri[WS(rs, 17)]; T4E = ii[WS(rs, 17)]; T4F = FMA(T3V, T4D, T3Y * T4E); T9w = FNMS(T3Y, T4D, T3V * T4E); T4H = ri[WS(rs, 49)]; T4J = ii[WS(rs, 49)]; T4K = FMA(T4G, T4H, T4I * T4J); T9x = FNMS(T4I, T4H, T4G * T4J); } T4L = T4F + T4K; TeB = T9w + T9x; { E T4P, T91, T4U, T92; { E T4N, T4O, T4R, T4T; T4N = ri[WS(rs, 9)]; T4O = ii[WS(rs, 9)]; T4P = FMA(T9, T4N, Te * T4O); T91 = FNMS(Te, T4N, T9 * T4O); T4R = ri[WS(rs, 41)]; T4T = ii[WS(rs, 41)]; T4U = FMA(T4Q, T4R, T4S * T4T); T92 = FNMS(T4S, T4R, T4Q * T4T); } T4V = T4P + T4U; TeS = T91 + T92; T90 = T4P - T4U; T93 = T91 - T92; } { E T50, T8W, T59, T8X; { E T4X, T4Z, T54, T58; T4X = ri[WS(rs, 57)]; T4Z = ii[WS(rs, 57)]; T50 = FMA(T4W, T4X, T4Y * T4Z); T8W = FNMS(T4Y, T4X, T4W * T4Z); T54 = ri[WS(rs, 25)]; T58 = ii[WS(rs, 25)]; T59 = FMA(T53, T54, T57 * T58); T8X = FNMS(T57, T54, T53 * T58); } T5a = T50 + T59; TeT = T8W + T8X; T8V = T50 - T59; T8Y = T8W - T8X; } { E T4M, T5b, TeR, TeU; T4M = T4C + T4L; T5b = T4V + T5a; T5c = T4M + T5b; TgV = T4M - T5b; TeR = T4C - T4L; TeU = TeS - TeT; TeV = TeR - TeU; Tg0 = TeR + TeU; } { E TgQ, TgR, T8S, T8T; TgQ = TeA + TeB; TgR = TeS + TeT; TgS = TgQ - TgR; ThD = TgQ + TgR; T8S = T8Q - T8R; T8T = T4F - T4K; T8U = T8S + T8T; Tcc = T8S - T8T; } { E T8Z, T94, T9A, T9B; T8Z = T8V - T8Y; T94 = T90 + T93; T95 = KP707106781 * (T8Z - T94); Tco = KP707106781 * (T94 + T8Z); T9A = T93 - T90; T9B = T8V + T8Y; T9C = KP707106781 * (T9A - T9B); Tcd = KP707106781 * (T9A + T9B); } { E TeC, TeD, T9v, T9y; TeC = TeA - TeB; TeD = T5a - T4V; TeE = TeC - TeD; Tg3 = TeC + TeD; T9v = T4w - T4B; T9y = T9w - T9x; T9z = T9v - T9y; Tcn = T9v + T9y; } } { E T5l, TeL, T9k, T9n, T5P, TeH, T9a, T9f, T5u, TeM, T9l, T9q, T5G, TeG, T97; E T9e; { E T5f, T9i, T5k, T9j; { E T5d, T5e, T5h, T5j; T5d = ri[WS(rs, 5)]; T5e = ii[WS(rs, 5)]; T5f = FMA(Tg, T5d, Tl * T5e); T9i = FNMS(Tl, T5d, Tg * T5e); T5h = ri[WS(rs, 37)]; T5j = ii[WS(rs, 37)]; T5k = FMA(T5g, T5h, T5i * T5j); T9j = FNMS(T5i, T5h, T5g * T5j); } T5l = T5f + T5k; TeL = T9i + T9j; T9k = T9i - T9j; T9n = T5f - T5k; } { E T5J, T98, T5O, T99; { E T5H, T5I, T5L, T5N; T5H = ri[WS(rs, 13)]; T5I = ii[WS(rs, 13)]; T5J = FMA(T1h, T5H, T1j * T5I); T98 = FNMS(T1j, T5H, T1h * T5I); T5L = ri[WS(rs, 45)]; T5N = ii[WS(rs, 45)]; T5O = FMA(T5K, T5L, T5M * T5N); T99 = FNMS(T5M, T5L, T5K * T5N); } T5P = T5J + T5O; TeH = T98 + T99; T9a = T98 - T99; T9f = T5J - T5O; } { E T5o, T9o, T5t, T9p; { E T5m, T5n, T5q, T5s; T5m = ri[WS(rs, 21)]; T5n = ii[WS(rs, 21)]; T5o = FMA(T3g, T5m, T3j * T5n); T9o = FNMS(T3j, T5m, T3g * T5n); T5q = ri[WS(rs, 53)]; T5s = ii[WS(rs, 53)]; T5t = FMA(T5p, T5q, T5r * T5s); T9p = FNMS(T5r, T5q, T5p * T5s); } T5u = T5o + T5t; TeM = T9o + T9p; T9l = T5o - T5t; T9q = T9o - T9p; } { E T5A, T9c, T5F, T9d; { E T5x, T5z, T5C, T5E; T5x = ri[WS(rs, 61)]; T5z = ii[WS(rs, 61)]; T5A = FMA(T5w, T5x, T5y * T5z); T9c = FNMS(T5y, T5x, T5w * T5z); T5C = ri[WS(rs, 29)]; T5E = ii[WS(rs, 29)]; T5F = FMA(T5B, T5C, T5D * T5E); T9d = FNMS(T5D, T5C, T5B * T5E); } T5G = T5A + T5F; TeG = T9c + T9d; T97 = T5A - T5F; T9e = T9c - T9d; } { E T5v, T5Q, TeK, TeN; T5v = T5l + T5u; T5Q = T5G + T5P; T5R = T5v + T5Q; TgT = T5Q - T5v; TeK = T5l - T5u; TeN = TeL - TeM; TeO = TeK + TeN; TeW = TeN - TeK; } { E TgW, TgX, T9b, T9g; TgW = TeL + TeM; TgX = TeG + TeH; TgY = TgW - TgX; ThE = TgW + TgX; T9b = T97 - T9a; T9g = T9e + T9f; T9h = FNMS(KP923879532, T9g, KP382683432 * T9b); T9F = FMA(KP382683432, T9g, KP923879532 * T9b); } { E T9m, T9r, Tci, Tcj; T9m = T9k + T9l; T9r = T9n - T9q; T9s = FMA(KP923879532, T9m, KP382683432 * T9r); T9E = FNMS(KP923879532, T9r, KP382683432 * T9m); Tci = T9k - T9l; Tcj = T9n + T9q; Tck = FMA(KP382683432, Tci, KP923879532 * Tcj); Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci); } { E TeF, TeI, Tcf, Tcg; TeF = T5G - T5P; TeI = TeG - TeH; TeJ = TeF - TeI; TeX = TeF + TeI; Tcf = T97 + T9a; Tcg = T9e - T9f; Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf); Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf); } } { E T6K, Tf6, Ta2, Ta5, T7c, Tfd, Tae, Taj, T6T, Tf7, Ta3, Ta8, T73, Tfc, Tad; E Tag; { E T6E, Ta0, T6J, Ta1; { E T6C, T6D, T6G, T6I; T6C = ri[WS(rs, 3)]; T6D = ii[WS(rs, 3)]; T6E = FMA(T3, T6C, T6 * T6D); Ta0 = FNMS(T6, T6C, T3 * T6D); T6G = ri[WS(rs, 35)]; T6I = ii[WS(rs, 35)]; T6J = FMA(T6F, T6G, T6H * T6I); Ta1 = FNMS(T6H, T6G, T6F * T6I); } T6K = T6E + T6J; Tf6 = Ta0 + Ta1; Ta2 = Ta0 - Ta1; Ta5 = T6E - T6J; } { E T76, Tah, T7b, Tai; { E T74, T75, T78, T7a; T74 = ri[WS(rs, 11)]; T75 = ii[WS(rs, 11)]; T76 = FMA(TA, T74, TE * T75); Tah = FNMS(TE, T74, TA * T75); T78 = ri[WS(rs, 43)]; T7a = ii[WS(rs, 43)]; T7b = FMA(T77, T78, T79 * T7a); Tai = FNMS(T79, T78, T77 * T7a); } T7c = T76 + T7b; Tfd = Tah + Tai; Tae = T76 - T7b; Taj = Tah - Tai; } { E T6N, Ta6, T6S, Ta7; { E T6L, T6M, T6P, T6R; T6L = ri[WS(rs, 19)]; T6M = ii[WS(rs, 19)]; T6N = FMA(T2z, T6L, T2C * T6M); Ta6 = FNMS(T2C, T6L, T2z * T6M); T6P = ri[WS(rs, 51)]; T6R = ii[WS(rs, 51)]; T6S = FMA(T6O, T6P, T6Q * T6R); Ta7 = FNMS(T6Q, T6P, T6O * T6R); } T6T = T6N + T6S; Tf7 = Ta6 + Ta7; Ta3 = T6N - T6S; Ta8 = Ta6 - Ta7; } { E T6Z, Tab, T72, Tac; { E T6W, T6Y, T70, T71; T6W = ri[WS(rs, 59)]; T6Y = ii[WS(rs, 59)]; T6Z = FMA(T6V, T6W, T6X * T6Y); Tab = FNMS(T6X, T6W, T6V * T6Y); T70 = ri[WS(rs, 27)]; T71 = ii[WS(rs, 27)]; T72 = FMA(Th, T70, Tm * T71); Tac = FNMS(Tm, T70, Th * T71); } T73 = T6Z + T72; Tfc = Tab + Tac; Tad = Tab - Tac; Tag = T6Z - T72; } { E T6U, T7d, Tfb, Tfe; T6U = T6K + T6T; T7d = T73 + T7c; T7e = T6U + T7d; Th9 = T7d - T6U; Tfb = T73 - T7c; Tfe = Tfc - Tfd; Tff = Tfb + Tfe; Tfn = Tfb - Tfe; } { E Th2, Th3, Ta4, Ta9; Th2 = Tf6 + Tf7; Th3 = Tfc + Tfd; Th4 = Th2 - Th3; ThJ = Th2 + Th3; Ta4 = Ta2 + Ta3; Ta9 = Ta5 - Ta8; Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4); Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9); } { E Taf, Tak, TcB, TcC; Taf = Tad + Tae; Tak = Tag - Taj; Tal = FMA(KP382683432, Taf, KP923879532 * Tak); Tax = FNMS(KP923879532, Taf, KP382683432 * Tak); TcB = Tad - Tae; TcC = Tag + Taj; TcD = FMA(KP923879532, TcB, KP382683432 * TcC); TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC); } { E Tf8, Tf9, Tcy, Tcz; Tf8 = Tf6 - Tf7; Tf9 = T6K - T6T; Tfa = Tf8 - Tf9; Tfo = Tf9 + Tf8; Tcy = Ta2 - Ta3; Tcz = Ta5 + Ta8; TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy); TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz); } } { E T2L, Thx, ThU, ThV, Ti5, Tib, T4s, Tia, T7g, Ti7, ThG, ThO, ThL, ThP, ThA; E ThW; { E T1L, T2K, ThS, ThT; T1L = T17 + T1K; T2K = T2e + T2J; T2L = T1L + T2K; Thx = T1L - T2K; ThS = ThD + ThE; ThT = ThI + ThJ; ThU = ThS - ThT; ThV = ThS + ThT; } { E ThX, Ti4, T3C, T4r; ThX = TgA + TgB; Ti4 = ThY + Ti3; Ti5 = ThX + Ti4; Tib = Ti4 - ThX; T3C = T36 + T3B; T4r = T45 + T4q; T4s = T3C + T4r; Tia = T4r - T3C; } { E T5S, T7f, ThC, ThF; T5S = T5c + T5R; T7f = T6B + T7e; T7g = T5S + T7f; Ti7 = T7f - T5S; ThC = T5c - T5R; ThF = ThD - ThE; ThG = ThC + ThF; ThO = ThF - ThC; } { E ThH, ThK, Thy, Thz; ThH = T6B - T7e; ThK = ThI - ThJ; ThL = ThH - ThK; ThP = ThH + ThK; Thy = TgE + TgF; Thz = TgK + TgL; ThA = Thy - Thz; ThW = Thy + Thz; } { E T4t, Ti6, ThR, Ti8; T4t = T2L + T4s; ri[WS(rs, 32)] = T4t - T7g; ri[0] = T4t + T7g; Ti6 = ThW + Ti5; ii[0] = ThV + Ti6; ii[WS(rs, 32)] = Ti6 - ThV; ThR = T2L - T4s; ri[WS(rs, 48)] = ThR - ThU; ri[WS(rs, 16)] = ThR + ThU; Ti8 = Ti5 - ThW; ii[WS(rs, 16)] = Ti7 + Ti8; ii[WS(rs, 48)] = Ti8 - Ti7; } { E ThB, ThM, Ti9, Tic; ThB = Thx + ThA; ThM = KP707106781 * (ThG + ThL); ri[WS(rs, 40)] = ThB - ThM; ri[WS(rs, 8)] = ThB + ThM; Ti9 = KP707106781 * (ThO + ThP); Tic = Tia + Tib; ii[WS(rs, 8)] = Ti9 + Tic; ii[WS(rs, 40)] = Tic - Ti9; } { E ThN, ThQ, Tid, Tie; ThN = Thx - ThA; ThQ = KP707106781 * (ThO - ThP); ri[WS(rs, 56)] = ThN - ThQ; ri[WS(rs, 24)] = ThN + ThQ; Tid = KP707106781 * (ThL - ThG); Tie = Tib - Tia; ii[WS(rs, 24)] = Tid + Tie; ii[WS(rs, 56)] = Tie - Tid; } } { E TgD, Thh, Thr, Thv, Tij, Tip, TgO, Tig, Th0, The, Thk, Tio, Tho, Thu, Thb; E Thf; { E Tgz, TgC, Thp, Thq; Tgz = T17 - T1K; TgC = TgA - TgB; TgD = Tgz - TgC; Thh = Tgz + TgC; Thp = Th1 + Th4; Thq = Th8 + Th9; Thr = FNMS(KP382683432, Thq, KP923879532 * Thp); Thv = FMA(KP923879532, Thq, KP382683432 * Thp); } { E Tih, Tii, TgI, TgN; Tih = T2J - T2e; Tii = Ti3 - ThY; Tij = Tih + Tii; Tip = Tii - Tih; TgI = TgG - TgH; TgN = TgJ + TgM; TgO = KP707106781 * (TgI - TgN); Tig = KP707106781 * (TgI + TgN); } { E TgU, TgZ, Thi, Thj; TgU = TgS - TgT; TgZ = TgV - TgY; Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ); The = FNMS(KP923879532, TgZ, KP382683432 * TgU); Thi = TgH + TgG; Thj = TgJ - TgM; Thk = KP707106781 * (Thi + Thj); Tio = KP707106781 * (Thj - Thi); } { E Thm, Thn, Th5, Tha; Thm = TgS + TgT; Thn = TgV + TgY; Tho = FMA(KP382683432, Thm, KP923879532 * Thn); Thu = FNMS(KP382683432, Thn, KP923879532 * Thm); Th5 = Th1 - Th4; Tha = Th8 - Th9; Thb = FNMS(KP923879532, Tha, KP382683432 * Th5); Thf = FMA(KP382683432, Tha, KP923879532 * Th5); } { E TgP, Thc, Tin, Tiq; TgP = TgD + TgO; Thc = Th0 + Thb; ri[WS(rs, 44)] = TgP - Thc; ri[WS(rs, 12)] = TgP + Thc; Tin = The + Thf; Tiq = Tio + Tip; ii[WS(rs, 12)] = Tin + Tiq; ii[WS(rs, 44)] = Tiq - Tin; } { E Thd, Thg, Tir, Tis; Thd = TgD - TgO; Thg = The - Thf; ri[WS(rs, 60)] = Thd - Thg; ri[WS(rs, 28)] = Thd + Thg; Tir = Thb - Th0; Tis = Tip - Tio; ii[WS(rs, 28)] = Tir + Tis; ii[WS(rs, 60)] = Tis - Tir; } { E Thl, Ths, Tif, Tik; Thl = Thh + Thk; Ths = Tho + Thr; ri[WS(rs, 36)] = Thl - Ths; ri[WS(rs, 4)] = Thl + Ths; Tif = Thu + Thv; Tik = Tig + Tij; ii[WS(rs, 4)] = Tif + Tik; ii[WS(rs, 36)] = Tik - Tif; } { E Tht, Thw, Til, Tim; Tht = Thh - Thk; Thw = Thu - Thv; ri[WS(rs, 52)] = Tht - Thw; ri[WS(rs, 20)] = Tht + Thw; Til = Thr - Tho; Tim = Tij - Tig; ii[WS(rs, 20)] = Til + Tim; ii[WS(rs, 52)] = Tim - Til; } } { E Teb, Tfx, Tey, TiK, TiN, TiT, TfA, TiS, Tfr, TfL, Tfv, TfH, Tf0, TfK, Tfu; E TfE; { E TdZ, Tea, Tfy, Tfz; TdZ = TdV - TdY; Tea = KP707106781 * (Te4 - Te9); Teb = TdZ - Tea; Tfx = TdZ + Tea; { E Tem, Tex, TiL, TiM; Tem = FNMS(KP923879532, Tel, KP382683432 * Teg); Tex = FMA(KP382683432, Ter, KP923879532 * Tew); Tey = Tem - Tex; TiK = Tem + Tex; TiL = KP707106781 * (TfP - TfO); TiM = Tix - Tiw; TiN = TiL + TiM; TiT = TiM - TiL; } Tfy = FMA(KP923879532, Teg, KP382683432 * Tel); Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew); TfA = Tfy + Tfz; TiS = Tfz - Tfy; { E Tfh, TfF, Tfq, TfG, Tfg, Tfp; Tfg = KP707106781 * (Tfa - Tff); Tfh = Tf5 - Tfg; TfF = Tf5 + Tfg; Tfp = KP707106781 * (Tfn - Tfo); Tfq = Tfm - Tfp; TfG = Tfm + Tfp; Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh); TfL = FMA(KP831469612, TfG, KP555570233 * TfF); Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh); TfH = FNMS(KP555570233, TfG, KP831469612 * TfF); } { E TeQ, TfC, TeZ, TfD, TeP, TeY; TeP = KP707106781 * (TeJ - TeO); TeQ = TeE - TeP; TfC = TeE + TeP; TeY = KP707106781 * (TeW - TeX); TeZ = TeV - TeY; TfD = TeV + TeY; Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ); TfK = FNMS(KP555570233, TfD, KP831469612 * TfC); Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ); TfE = FMA(KP555570233, TfC, KP831469612 * TfD); } } { E Tez, Tfs, TiR, TiU; Tez = Teb + Tey; Tfs = Tf0 + Tfr; ri[WS(rs, 46)] = Tez - Tfs; ri[WS(rs, 14)] = Tez + Tfs; TiR = Tfu + Tfv; TiU = TiS + TiT; ii[WS(rs, 14)] = TiR + TiU; ii[WS(rs, 46)] = TiU - TiR; } { E Tft, Tfw, TiV, TiW; Tft = Teb - Tey; Tfw = Tfu - Tfv; ri[WS(rs, 62)] = Tft - Tfw; ri[WS(rs, 30)] = Tft + Tfw; TiV = Tfr - Tf0; TiW = TiT - TiS; ii[WS(rs, 30)] = TiV + TiW; ii[WS(rs, 62)] = TiW - TiV; } { E TfB, TfI, TiJ, TiO; TfB = Tfx + TfA; TfI = TfE + TfH; ri[WS(rs, 38)] = TfB - TfI; ri[WS(rs, 6)] = TfB + TfI; TiJ = TfK + TfL; TiO = TiK + TiN; ii[WS(rs, 6)] = TiJ + TiO; ii[WS(rs, 38)] = TiO - TiJ; } { E TfJ, TfM, TiP, TiQ; TfJ = Tfx - TfA; TfM = TfK - TfL; ri[WS(rs, 54)] = TfJ - TfM; ri[WS(rs, 22)] = TfJ + TfM; TiP = TfH - TfE; TiQ = TiN - TiK; ii[WS(rs, 22)] = TiP + TiQ; ii[WS(rs, 54)] = TiQ - TiP; } } { E TfR, Tgj, TfY, Tiu, Tiz, TiF, Tgm, TiE, Tgd, Tgx, Tgh, Tgt, Tg6, Tgw, Tgg; E Tgq; { E TfN, TfQ, Tgk, Tgl; TfN = TdV + TdY; TfQ = KP707106781 * (TfO + TfP); TfR = TfN - TfQ; Tgj = TfN + TfQ; { E TfU, TfX, Tiv, Tiy; TfU = FNMS(KP382683432, TfT, KP923879532 * TfS); TfX = FMA(KP923879532, TfV, KP382683432 * TfW); TfY = TfU - TfX; Tiu = TfU + TfX; Tiv = KP707106781 * (Te4 + Te9); Tiy = Tiw + Tix; Tiz = Tiv + Tiy; TiF = Tiy - Tiv; } Tgk = FMA(KP382683432, TfS, KP923879532 * TfT); Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW); Tgm = Tgk + Tgl; TiE = Tgl - Tgk; { E Tg9, Tgr, Tgc, Tgs, Tg8, Tgb; Tg8 = KP707106781 * (Tfo + Tfn); Tg9 = Tg7 - Tg8; Tgr = Tg7 + Tg8; Tgb = KP707106781 * (Tfa + Tff); Tgc = Tga - Tgb; Tgs = Tga + Tgb; Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9); Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs); Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc); Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr); } { E Tg2, Tgo, Tg5, Tgp, Tg1, Tg4; Tg1 = KP707106781 * (TeO + TeJ); Tg2 = Tg0 - Tg1; Tgo = Tg0 + Tg1; Tg4 = KP707106781 * (TeW + TeX); Tg5 = Tg3 - Tg4; Tgp = Tg3 + Tg4; Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5); Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp); Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5); Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp); } } { E TfZ, Tge, TiD, TiG; TfZ = TfR + TfY; Tge = Tg6 + Tgd; ri[WS(rs, 42)] = TfZ - Tge; ri[WS(rs, 10)] = TfZ + Tge; TiD = Tgg + Tgh; TiG = TiE + TiF; ii[WS(rs, 10)] = TiD + TiG; ii[WS(rs, 42)] = TiG - TiD; } { E Tgf, Tgi, TiH, TiI; Tgf = TfR - TfY; Tgi = Tgg - Tgh; ri[WS(rs, 58)] = Tgf - Tgi; ri[WS(rs, 26)] = Tgf + Tgi; TiH = Tgd - Tg6; TiI = TiF - TiE; ii[WS(rs, 26)] = TiH + TiI; ii[WS(rs, 58)] = TiI - TiH; } { E Tgn, Tgu, Tit, TiA; Tgn = Tgj + Tgm; Tgu = Tgq + Tgt; ri[WS(rs, 34)] = Tgn - Tgu; ri[WS(rs, 2)] = Tgn + Tgu; Tit = Tgw + Tgx; TiA = Tiu + Tiz; ii[WS(rs, 2)] = Tit + TiA; ii[WS(rs, 34)] = TiA - Tit; } { E Tgv, Tgy, TiB, TiC; Tgv = Tgj - Tgm; Tgy = Tgw - Tgx; ri[WS(rs, 50)] = Tgv - Tgy; ri[WS(rs, 18)] = Tgv + Tgy; TiB = Tgt - Tgq; TiC = Tiz - Tiu; ii[WS(rs, 18)] = TiB + TiC; ii[WS(rs, 50)] = TiC - TiB; } } { E T7V, TaH, TjN, TjT, T8O, TjS, TaK, TjK, T9I, TaU, TaE, TaO, TaB, TaV, TaF; E TaR; { E T7x, T7U, TjL, TjM; T7x = T7l - T7w; T7U = T7I - T7T; T7V = T7x - T7U; TaH = T7x + T7U; TjL = TaZ - TaY; TjM = Tjx - Tjw; TjN = TjL + TjM; TjT = TjM - TjL; } { E T8m, TaI, T8N, TaJ; { E T8c, T8l, T8D, T8M; T8c = T80 - T8b; T8l = T8h - T8k; T8m = FNMS(KP980785280, T8l, KP195090322 * T8c); TaI = FMA(KP980785280, T8c, KP195090322 * T8l); T8D = T8r - T8C; T8M = T8I - T8L; T8N = FMA(KP195090322, T8D, KP980785280 * T8M); TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M); } T8O = T8m - T8N; TjS = TaJ - TaI; TaK = TaI + TaJ; TjK = T8m + T8N; } { E T9u, TaM, T9H, TaN; { E T96, T9t, T9D, T9G; T96 = T8U - T95; T9t = T9h - T9s; T9u = T96 - T9t; TaM = T96 + T9t; T9D = T9z - T9C; T9G = T9E - T9F; T9H = T9D - T9G; TaN = T9D + T9G; } T9I = FMA(KP995184726, T9u, KP098017140 * T9H); TaU = FNMS(KP634393284, TaN, KP773010453 * TaM); TaE = FNMS(KP995184726, T9H, KP098017140 * T9u); TaO = FMA(KP634393284, TaM, KP773010453 * TaN); } { E Tan, TaP, TaA, TaQ; { E T9Z, Tam, Taw, Taz; T9Z = T9N - T9Y; Tam = Taa - Tal; Tan = T9Z - Tam; TaP = T9Z + Tam; Taw = Tas - Tav; Taz = Tax - Tay; TaA = Taw - Taz; TaQ = Taw + Taz; } TaB = FNMS(KP995184726, TaA, KP098017140 * Tan); TaV = FMA(KP773010453, TaQ, KP634393284 * TaP); TaF = FMA(KP098017140, TaA, KP995184726 * Tan); TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP); } { E T8P, TaC, TjR, TjU; T8P = T7V + T8O; TaC = T9I + TaB; ri[WS(rs, 47)] = T8P - TaC; ri[WS(rs, 15)] = T8P + TaC; TjR = TaE + TaF; TjU = TjS + TjT; ii[WS(rs, 15)] = TjR + TjU; ii[WS(rs, 47)] = TjU - TjR; } { E TaD, TaG, TjV, TjW; TaD = T7V - T8O; TaG = TaE - TaF; ri[WS(rs, 63)] = TaD - TaG; ri[WS(rs, 31)] = TaD + TaG; TjV = TaB - T9I; TjW = TjT - TjS; ii[WS(rs, 31)] = TjV + TjW; ii[WS(rs, 63)] = TjW - TjV; } { E TaL, TaS, TjJ, TjO; TaL = TaH + TaK; TaS = TaO + TaR; ri[WS(rs, 39)] = TaL - TaS; ri[WS(rs, 7)] = TaL + TaS; TjJ = TaU + TaV; TjO = TjK + TjN; ii[WS(rs, 7)] = TjJ + TjO; ii[WS(rs, 39)] = TjO - TjJ; } { E TaT, TaW, TjP, TjQ; TaT = TaH - TaK; TaW = TaU - TaV; ri[WS(rs, 55)] = TaT - TaW; ri[WS(rs, 23)] = TaT + TaW; TjP = TaR - TaO; TjQ = TjN - TjK; ii[WS(rs, 23)] = TjP + TjQ; ii[WS(rs, 55)] = TjQ - TjP; } } { E TbV, TcT, Tjj, Tjp, Tca, Tjo, TcW, Tjg, Tcu, Td6, TcQ, Td0, TcN, Td7, TcR; E Td3; { E TbN, TbU, Tjh, Tji; TbN = TbJ - TbM; TbU = TbQ - TbT; TbV = TbN - TbU; TcT = TbN + TbU; Tjh = Tdb - Tda; Tji = Tj3 - Tj0; Tjj = Tjh + Tji; Tjp = Tji - Tjh; } { E Tc2, TcU, Tc9, TcV; { E TbY, Tc1, Tc5, Tc8; TbY = TbW - TbX; Tc1 = TbZ - Tc0; Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY); TcU = FMA(KP555570233, Tc1, KP831469612 * TbY); Tc5 = Tc3 - Tc4; Tc8 = Tc6 - Tc7; Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8); TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5); } Tca = Tc2 - Tc9; Tjo = TcV - TcU; TcW = TcU + TcV; Tjg = Tc2 + Tc9; } { E Tcm, TcY, Tct, TcZ; { E Tce, Tcl, Tcp, Tcs; Tce = Tcc - Tcd; Tcl = Tch - Tck; Tcm = Tce - Tcl; TcY = Tce + Tcl; Tcp = Tcn - Tco; Tcs = Tcq - Tcr; Tct = Tcp - Tcs; TcZ = Tcp + Tcs; } Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct); Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY); TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm); Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ); } { E TcF, Td1, TcM, Td2; { E Tcx, TcE, TcI, TcL; Tcx = Tcv - Tcw; TcE = TcA - TcD; TcF = Tcx - TcE; Td1 = Tcx + TcE; TcI = TcG - TcH; TcL = TcJ - TcK; TcM = TcI - TcL; Td2 = TcI + TcL; } TcN = FNMS(KP956940335, TcM, KP290284677 * TcF); Td7 = FMA(KP881921264, Td2, KP471396736 * Td1); TcR = FMA(KP290284677, TcM, KP956940335 * TcF); Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1); } { E Tcb, TcO, Tjn, Tjq; Tcb = TbV + Tca; TcO = Tcu + TcN; ri[WS(rs, 45)] = Tcb - TcO; ri[WS(rs, 13)] = Tcb + TcO; Tjn = TcQ + TcR; Tjq = Tjo + Tjp; ii[WS(rs, 13)] = Tjn + Tjq; ii[WS(rs, 45)] = Tjq - Tjn; } { E TcP, TcS, Tjr, Tjs; TcP = TbV - Tca; TcS = TcQ - TcR; ri[WS(rs, 61)] = TcP - TcS; ri[WS(rs, 29)] = TcP + TcS; Tjr = TcN - Tcu; Tjs = Tjp - Tjo; ii[WS(rs, 29)] = Tjr + Tjs; ii[WS(rs, 61)] = Tjs - Tjr; } { E TcX, Td4, Tjf, Tjk; TcX = TcT + TcW; Td4 = Td0 + Td3; ri[WS(rs, 37)] = TcX - Td4; ri[WS(rs, 5)] = TcX + Td4; Tjf = Td6 + Td7; Tjk = Tjg + Tjj; ii[WS(rs, 5)] = Tjf + Tjk; ii[WS(rs, 37)] = Tjk - Tjf; } { E Td5, Td8, Tjl, Tjm; Td5 = TcT - TcW; Td8 = Td6 - Td7; ri[WS(rs, 53)] = Td5 - Td8; ri[WS(rs, 21)] = Td5 + Td8; Tjl = Td3 - Td0; Tjm = Tjj - Tjg; ii[WS(rs, 21)] = Tjl + Tjm; ii[WS(rs, 53)] = Tjm - Tjl; } } { E Tdd, TdF, Tj5, Tjb, Tdk, Tja, TdI, TiY, Tds, TdS, TdC, TdM, Tdz, TdT, TdD; E TdP; { E Td9, Tdc, TiZ, Tj4; Td9 = TbJ + TbM; Tdc = Tda + Tdb; Tdd = Td9 - Tdc; TdF = Td9 + Tdc; TiZ = TbQ + TbT; Tj4 = Tj0 + Tj3; Tj5 = TiZ + Tj4; Tjb = Tj4 - TiZ; } { E Tdg, TdG, Tdj, TdH; { E Tde, Tdf, Tdh, Tdi; Tde = TbW + TbX; Tdf = TbZ + Tc0; Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde); TdG = FMA(KP980785280, Tdf, KP195090322 * Tde); Tdh = Tc3 + Tc4; Tdi = Tc6 + Tc7; Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi); TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh); } Tdk = Tdg - Tdj; Tja = TdH - TdG; TdI = TdG + TdH; TiY = Tdg + Tdj; } { E Tdo, TdK, Tdr, TdL; { E Tdm, Tdn, Tdp, Tdq; Tdm = Tcn + Tco; Tdn = Tck + Tch; Tdo = Tdm - Tdn; TdK = Tdm + Tdn; Tdp = Tcc + Tcd; Tdq = Tcq + Tcr; Tdr = Tdp - Tdq; TdL = Tdp + Tdq; } Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr); TdS = FNMS(KP098017140, TdK, KP995184726 * TdL); TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr); TdM = FMA(KP995184726, TdK, KP098017140 * TdL); } { E Tdv, TdN, Tdy, TdO; { E Tdt, Tdu, Tdw, Tdx; Tdt = Tcv + Tcw; Tdu = TcK + TcJ; Tdv = Tdt - Tdu; TdN = Tdt + Tdu; Tdw = TcG + TcH; Tdx = TcA + TcD; Tdy = Tdw - Tdx; TdO = Tdw + Tdx; } Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv); TdT = FMA(KP098017140, TdN, KP995184726 * TdO); TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy); TdP = FNMS(KP098017140, TdO, KP995184726 * TdN); } { E Tdl, TdA, Tj9, Tjc; Tdl = Tdd + Tdk; TdA = Tds + Tdz; ri[WS(rs, 41)] = Tdl - TdA; ri[WS(rs, 9)] = Tdl + TdA; Tj9 = TdC + TdD; Tjc = Tja + Tjb; ii[WS(rs, 9)] = Tj9 + Tjc; ii[WS(rs, 41)] = Tjc - Tj9; } { E TdB, TdE, Tjd, Tje; TdB = Tdd - Tdk; TdE = TdC - TdD; ri[WS(rs, 57)] = TdB - TdE; ri[WS(rs, 25)] = TdB + TdE; Tjd = Tdz - Tds; Tje = Tjb - Tja; ii[WS(rs, 25)] = Tjd + Tje; ii[WS(rs, 57)] = Tje - Tjd; } { E TdJ, TdQ, TiX, Tj6; TdJ = TdF + TdI; TdQ = TdM + TdP; ri[WS(rs, 33)] = TdJ - TdQ; ri[WS(rs, 1)] = TdJ + TdQ; TiX = TdS + TdT; Tj6 = TiY + Tj5; ii[WS(rs, 1)] = TiX + Tj6; ii[WS(rs, 33)] = Tj6 - TiX; } { E TdR, TdU, Tj7, Tj8; TdR = TdF - TdI; TdU = TdS - TdT; ri[WS(rs, 49)] = TdR - TdU; ri[WS(rs, 17)] = TdR + TdU; Tj7 = TdP - TdM; Tj8 = Tj5 - TiY; ii[WS(rs, 17)] = Tj7 + Tj8; ii[WS(rs, 49)] = Tj8 - Tj7; } } { E Tb1, Tbt, Tjz, TjF, Tb8, TjE, Tbw, Tju, Tbg, TbG, Tbq, TbA, Tbn, TbH, Tbr; E TbD; { E TaX, Tb0, Tjv, Tjy; TaX = T7l + T7w; Tb0 = TaY + TaZ; Tb1 = TaX - Tb0; Tbt = TaX + Tb0; Tjv = T7I + T7T; Tjy = Tjw + Tjx; Tjz = Tjv + Tjy; TjF = Tjy - Tjv; } { E Tb4, Tbu, Tb7, Tbv; { E Tb2, Tb3, Tb5, Tb6; Tb2 = T80 + T8b; Tb3 = T8h + T8k; Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2); Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3); Tb5 = T8r + T8C; Tb6 = T8I + T8L; Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6); Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6); } Tb8 = Tb4 - Tb7; TjE = Tbv - Tbu; Tbw = Tbu + Tbv; Tju = Tb4 + Tb7; } { E Tbc, Tby, Tbf, Tbz; { E Tba, Tbb, Tbd, Tbe; Tba = T9z + T9C; Tbb = T9s + T9h; Tbc = Tba - Tbb; Tby = Tba + Tbb; Tbd = T8U + T95; Tbe = T9E + T9F; Tbf = Tbd - Tbe; Tbz = Tbd + Tbe; } Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf); TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz); Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf); TbA = FMA(KP956940335, Tby, KP290284677 * Tbz); } { E Tbj, TbB, Tbm, TbC; { E Tbh, Tbi, Tbk, Tbl; Tbh = T9N + T9Y; Tbi = Tay + Tax; Tbj = Tbh - Tbi; TbB = Tbh + Tbi; Tbk = Tas + Tav; Tbl = Taa + Tal; Tbm = Tbk - Tbl; TbC = Tbk + Tbl; } Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj); TbH = FMA(KP290284677, TbB, KP956940335 * TbC); Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm); TbD = FNMS(KP290284677, TbC, KP956940335 * TbB); } { E Tb9, Tbo, TjD, TjG; Tb9 = Tb1 + Tb8; Tbo = Tbg + Tbn; ri[WS(rs, 43)] = Tb9 - Tbo; ri[WS(rs, 11)] = Tb9 + Tbo; TjD = Tbq + Tbr; TjG = TjE + TjF; ii[WS(rs, 11)] = TjD + TjG; ii[WS(rs, 43)] = TjG - TjD; } { E Tbp, Tbs, TjH, TjI; Tbp = Tb1 - Tb8; Tbs = Tbq - Tbr; ri[WS(rs, 59)] = Tbp - Tbs; ri[WS(rs, 27)] = Tbp + Tbs; TjH = Tbn - Tbg; TjI = TjF - TjE; ii[WS(rs, 27)] = TjH + TjI; ii[WS(rs, 59)] = TjI - TjH; } { E Tbx, TbE, Tjt, TjA; Tbx = Tbt + Tbw; TbE = TbA + TbD; ri[WS(rs, 35)] = Tbx - TbE; ri[WS(rs, 3)] = Tbx + TbE; Tjt = TbG + TbH; TjA = Tju + Tjz; ii[WS(rs, 3)] = Tjt + TjA; ii[WS(rs, 35)] = TjA - Tjt; } { E TbF, TbI, TjB, TjC; TbF = Tbt - Tbw; TbI = TbG - TbH; ri[WS(rs, 51)] = TbF - TbI; ri[WS(rs, 19)] = TbF + TbI; TjB = TbD - TbA; TjC = Tjz - Tju; ii[WS(rs, 19)] = TjB + TjC; ii[WS(rs, 51)] = TjC - TjB; } } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 0, 1}, {TW_CEXP, 0, 3}, {TW_CEXP, 0, 9}, {TW_CEXP, 0, 27}, {TW_CEXP, 0, 63}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {880, 386, 274, 0}, 0, 0, 0 }; void X(codelet_t2_64) (planner *p) { X(kdft_dit_register) (p, t2_64, &desc); } #endif