/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:57 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */ /* * This function contains 48 FP additions, 20 FP multiplications, * (or, 30 additions, 2 multiplications, 18 fused multiply/add), * 27 stack variables, 2 constants, and 24 memory accesses */ #include "dft/simd/n1b.h" static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { V T5, Ta, TJ, TB, Tq, Tp, Tg, Tl, TG, Ty, Tt, Ts; { V T1, T6, T4, Tz, T9, TA; T1 = LD(&(xi[0]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); { V T2, T3, T7, T8; T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T4 = VADD(T2, T3); Tz = VSUB(T2, T3); T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T9 = VADD(T7, T8); TA = VSUB(T7, T8); } T5 = VADD(T1, T4); Ta = VADD(T6, T9); TJ = VSUB(Tz, TA); TB = VADD(Tz, TA); Tq = VFNMS(LDK(KP500000000), T9, T6); Tp = VFNMS(LDK(KP500000000), T4, T1); } { V Tc, Th, Tf, Tw, Tk, Tx; Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); { V Td, Te, Ti, Tj; Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Tf = VADD(Td, Te); Tw = VSUB(Td, Te); Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Tk = VADD(Ti, Tj); Tx = VSUB(Tj, Ti); } Tg = VADD(Tc, Tf); Tl = VADD(Th, Tk); TG = VADD(Tw, Tx); Ty = VSUB(Tw, Tx); Tt = VFNMS(LDK(KP500000000), Tk, Th); Ts = VFNMS(LDK(KP500000000), Tf, Tc); } { V Tb, Tm, Tn, To; Tb = VSUB(T5, Ta); Tm = VSUB(Tg, Tl); ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)])); Tn = VADD(T5, Ta); To = VADD(Tg, Tl); ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0])); ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0])); } { V TC, TE, Tv, TD, Tr, Tu; TC = VMUL(LDK(KP866025403), VSUB(Ty, TB)); TE = VMUL(LDK(KP866025403), VADD(TB, Ty)); Tr = VADD(Tp, Tq); Tu = VADD(Ts, Tt); Tv = VSUB(Tr, Tu); TD = VADD(Tr, Tu); ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0])); ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0])); ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0])); ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); } { V TH, TL, TK, TM, TF, TI; TF = VSUB(Tp, Tq); TH = VFNMS(LDK(KP866025403), TG, TF); TL = VFMA(LDK(KP866025403), TG, TF); TI = VSUB(Ts, Tt); TK = VFMA(LDK(KP866025403), TJ, TI); TM = VFNMS(LDK(KP866025403), TJ, TI); ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)])); } } } VLEAVE(); } static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1bv_12) (planner *p) { X(kdft_register) (p, n1bv_12, &desc); } #else /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */ /* * This function contains 48 FP additions, 8 FP multiplications, * (or, 44 additions, 4 multiplications, 4 fused multiply/add), * 27 stack variables, 2 constants, and 24 memory accesses */ #include "dft/simd/n1b.h" static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts; { V T1, T6, T4, Tk, T9, Tl; T1 = LD(&(xi[0]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); { V T2, T3, T7, T8; T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T4 = VADD(T2, T3); Tk = VSUB(T2, T3); T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T9 = VADD(T7, T8); Tl = VSUB(T7, T8); } T5 = VFNMS(LDK(KP500000000), T4, T1); Ta = VFNMS(LDK(KP500000000), T9, T6); TG = VADD(T6, T9); TF = VADD(T1, T4); Ty = VADD(Tk, Tl); Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl)); } { V Tn, Tq, Te, To, Th, Tr; Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); { V Tc, Td, Tf, Tg; Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Te = VSUB(Tc, Td); To = VADD(Tc, Td); Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Th = VSUB(Tf, Tg); Tr = VADD(Tf, Tg); } Ti = VMUL(LDK(KP866025403), VSUB(Te, Th)); Tp = VFNMS(LDK(KP500000000), To, Tn); TJ = VADD(Tq, Tr); TI = VADD(Tn, To); Tx = VADD(Te, Th); Ts = VFNMS(LDK(KP500000000), Tr, Tq); } { V TH, TK, TL, TM; TH = VSUB(TF, TG); TK = VBYI(VSUB(TI, TJ)); ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)])); TL = VADD(TF, TG); TM = VADD(TI, TJ); ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0])); ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0])); } { V Tj, Tv, Tu, Tw, Tb, Tt; Tb = VSUB(T5, Ta); Tj = VSUB(Tb, Ti); Tv = VADD(Tb, Ti); Tt = VSUB(Tp, Ts); Tu = VBYI(VADD(Tm, Tt)); Tw = VBYI(VSUB(Tt, Tm)); ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)])); } { V Tz, TD, TC, TE, TA, TB; Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty))); TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx))); TA = VADD(T5, Ta); TB = VADD(Tp, Ts); TC = VSUB(TA, TB); TE = VADD(TA, TB); ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0])); ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0])); ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0])); ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0])); } } } VLEAVE(); } static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1bv_12) (planner *p) { X(kdft_register) (p, n1bv_12, &desc); } #endif