/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:55 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n1bv_8 -include dft/simd/n1b.h */ /* * This function contains 26 FP additions, 10 FP multiplications, * (or, 16 additions, 0 multiplications, 10 fused multiply/add), * 22 stack variables, 1 constants, and 16 memory accesses */ #include "dft/simd/n1b.h" static void n1bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { V T3, Tj, Te, Tk, Ta, Tn, Tf, Tm; { V T1, T2, Tc, Td; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = VSUB(T1, T2); Tj = VADD(T1, T2); Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Te = VSUB(Tc, Td); Tk = VADD(Tc, Td); { V T4, T5, T6, T7, T8, T9; T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T6 = VSUB(T4, T5); T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T9 = VSUB(T7, T8); Ta = VADD(T6, T9); Tn = VADD(T7, T8); Tf = VSUB(T6, T9); Tm = VADD(T4, T5); } } { V Tb, Tg, Tp, Tq; Tb = VFNMS(LDK(KP707106781), Ta, T3); Tg = VFNMS(LDK(KP707106781), Tf, Te); ST(&(xo[WS(os, 3)]), VFNMSI(Tg, Tb), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 5)]), VFMAI(Tg, Tb), ovs, &(xo[WS(os, 1)])); Tp = VADD(Tj, Tk); Tq = VADD(Tm, Tn); ST(&(xo[WS(os, 4)]), VSUB(Tp, Tq), ovs, &(xo[0])); ST(&(xo[0]), VADD(Tp, Tq), ovs, &(xo[0])); } { V Th, Ti, Tl, To; Th = VFMA(LDK(KP707106781), Ta, T3); Ti = VFMA(LDK(KP707106781), Tf, Te); ST(&(xo[WS(os, 1)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 7)]), VFNMSI(Ti, Th), ovs, &(xo[WS(os, 1)])); Tl = VSUB(Tj, Tk); To = VSUB(Tm, Tn); ST(&(xo[WS(os, 6)]), VFNMSI(To, Tl), ovs, &(xo[0])); ST(&(xo[WS(os, 2)]), VFMAI(To, Tl), ovs, &(xo[0])); } } } VLEAVE(); } static const kdft_desc desc = { 8, XSIMD_STRING("n1bv_8"), {16, 0, 10, 0}, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1bv_8) (planner *p) { X(kdft_register) (p, n1bv_8, &desc); } #else /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n1bv_8 -include dft/simd/n1b.h */ /* * This function contains 26 FP additions, 2 FP multiplications, * (or, 26 additions, 2 multiplications, 0 fused multiply/add), * 22 stack variables, 1 constants, and 16 memory accesses */ #include "dft/simd/n1b.h" static void n1bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { V Ta, Tk, Te, Tj, T7, Tn, Tf, Tm; { V T8, T9, Tc, Td; T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T9 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Ta = VSUB(T8, T9); Tk = VADD(T8, T9); Tc = LD(&(xi[0]), ivs, &(xi[0])); Td = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); Te = VSUB(Tc, Td); Tj = VADD(Tc, Td); { V T1, T2, T3, T4, T5, T6; T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T3 = VSUB(T1, T2); T4 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T6 = VSUB(T4, T5); T7 = VMUL(LDK(KP707106781), VSUB(T3, T6)); Tn = VADD(T4, T5); Tf = VMUL(LDK(KP707106781), VADD(T3, T6)); Tm = VADD(T1, T2); } } { V Tb, Tg, Tp, Tq; Tb = VBYI(VSUB(T7, Ta)); Tg = VSUB(Te, Tf); ST(&(xo[WS(os, 3)]), VADD(Tb, Tg), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 5)]), VSUB(Tg, Tb), ovs, &(xo[WS(os, 1)])); Tp = VADD(Tj, Tk); Tq = VADD(Tm, Tn); ST(&(xo[WS(os, 4)]), VSUB(Tp, Tq), ovs, &(xo[0])); ST(&(xo[0]), VADD(Tp, Tq), ovs, &(xo[0])); } { V Th, Ti, Tl, To; Th = VBYI(VADD(Ta, T7)); Ti = VADD(Te, Tf); ST(&(xo[WS(os, 1)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 7)]), VSUB(Ti, Th), ovs, &(xo[WS(os, 1)])); Tl = VSUB(Tj, Tk); To = VBYI(VSUB(Tm, Tn)); ST(&(xo[WS(os, 6)]), VSUB(Tl, To), ovs, &(xo[0])); ST(&(xo[WS(os, 2)]), VADD(Tl, To), ovs, &(xo[0])); } } } VLEAVE(); } static const kdft_desc desc = { 8, XSIMD_STRING("n1bv_8"), {26, 2, 0, 0}, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1bv_8) (planner *p) { X(kdft_register) (p, n1bv_8, &desc); } #endif