/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:55 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */ /* * This function contains 46 FP additions, 38 FP multiplications, * (or, 12 additions, 4 multiplications, 34 fused multiply/add), * 50 stack variables, 19 constants, and 18 memory accesses */ #include "dft/simd/n1b.h" static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP666666666, +0.666666666666666666666666666666666666666666667); DVK(KP852868531, +0.852868531952443209628250963940074071936020296); DVK(KP898197570, +0.898197570222573798468955502359086394667167570); DVK(KP673648177, +0.673648177666930348851716626769314796000375677); DVK(KP879385241, +0.879385241571816768108218554649462939872416269); DVK(KP984807753, +0.984807753012208059366743024589523013670643252); DVK(KP939692620, +0.939692620785908384054109277324731469936208134); DVK(KP826351822, +0.826351822333069651148283373230685203999624323); DVK(KP420276625, +0.420276625461206169731530603237061658838781920); DVK(KP907603734, +0.907603734547952313649323976213898122064543220); DVK(KP347296355, +0.347296355333860697703433253538629592000751354); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP968908795, +0.968908795874236621082202410917456709164223497); DVK(KP726681596, +0.726681596905677465811651808188092531873167623); DVK(KP586256827, +0.586256827714544512072145703099641959914944179); DVK(KP152703644, +0.152703644666139302296566746461370407999248646); DVK(KP203604859, +0.203604859554852403062088995281827210665664861); DVK(KP439692620, +0.439692620785908384054109277324731469936208134); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { V T5, TF, Tp, Te, Td, TG, TH, Ta, Tm, Tu, Tr, Th, Ti, Tv, Ts; V TK, TI, TJ; { V T1, T2, T3, T4; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); T4 = VADD(T2, T3); T5 = VFNMS(LDK(KP500000000), T4, T1); TF = VADD(T1, T4); Tp = VSUB(T2, T3); } { V T6, Tf, T9, Tg; T6 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); { V T7, T8, Tb, Tc; T7 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T8 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T9 = VADD(T7, T8); Te = VSUB(T8, T7); Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Td = VSUB(Tb, Tc); Tg = VADD(Tb, Tc); } TG = VADD(Tf, Tg); TH = VADD(T6, T9); Ta = VFNMS(LDK(KP500000000), T9, T6); Tm = VFNMS(LDK(KP439692620), Td, Ta); Tu = VFMA(LDK(KP203604859), Ta, Te); Tr = VFNMS(LDK(KP152703644), Te, Ta); Th = VFNMS(LDK(KP500000000), Tg, Tf); Ti = VFNMS(LDK(KP586256827), Th, Te); Tv = VFNMS(LDK(KP726681596), Td, Th); Ts = VFMA(LDK(KP968908795), Th, Td); } TK = VMUL(LDK(KP866025403), VSUB(TG, TH)); TI = VADD(TG, TH); TJ = VFNMS(LDK(KP500000000), TI, TF); ST(&(xo[WS(os, 3)]), VFMAI(TK, TJ), ovs, &(xo[WS(os, 1)])); ST(&(xo[0]), VADD(TI, TF), ovs, &(xo[0])); ST(&(xo[WS(os, 6)]), VFNMSI(TK, TJ), ovs, &(xo[0])); { V Tk, To, Tj, Tn, Tl, Tq; Tj = VFNMS(LDK(KP347296355), Ti, Td); Tk = VFNMS(LDK(KP907603734), Tj, Ta); Tn = VFNMS(LDK(KP420276625), Tm, Te); To = VFNMS(LDK(KP826351822), Tn, Th); Tl = VFNMS(LDK(KP939692620), Tk, T5); Tq = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tp, To)); ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tl), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 2)]), VFMAI(Tq, Tl), ovs, &(xo[0])); } { V Tx, TD, TB, TE, Ty, TC; { V Tt, Tw, Tz, TA; Tt = VFNMS(LDK(KP673648177), Ts, Tr); Tw = VFMA(LDK(KP898197570), Tv, Tu); Tx = VFNMS(LDK(KP500000000), Tw, Tt); TD = VFMA(LDK(KP852868531), Tw, T5); Tz = VFNMS(LDK(KP898197570), Tv, Tu); TA = VFMA(LDK(KP673648177), Ts, Tr); TB = VFMA(LDK(KP666666666), TA, Tz); TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tp, TA)); } ST(&(xo[WS(os, 1)]), VFMAI(TE, TD), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); Ty = VFMA(LDK(KP852868531), Tx, T5); TC = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TB, Tp)); ST(&(xo[WS(os, 4)]), VFMAI(TC, Ty), ovs, &(xo[0])); ST(&(xo[WS(os, 5)]), VFNMSI(TC, Ty), ovs, &(xo[WS(os, 1)])); } } } VLEAVE(); } static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), {12, 4, 34, 0}, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1bv_9) (planner *p) { X(kdft_register) (p, n1bv_9, &desc); } #else /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */ /* * This function contains 46 FP additions, 26 FP multiplications, * (or, 30 additions, 10 multiplications, 16 fused multiply/add), * 41 stack variables, 14 constants, and 18 memory accesses */ #include "dft/simd/n1b.h" static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP342020143, +0.342020143325668733044099614682259580763083368); DVK(KP813797681, +0.813797681349373692844693217248393223289101568); DVK(KP939692620, +0.939692620785908384054109277324731469936208134); DVK(KP296198132, +0.296198132726023843175338011893050938967728390); DVK(KP642787609, +0.642787609686539326322643409907263432907559884); DVK(KP663413948, +0.663413948168938396205421319635891297216863310); DVK(KP556670399, +0.556670399226419366452912952047023132968291906); DVK(KP766044443, +0.766044443118978035202392650555416673935832457); DVK(KP984807753, +0.984807753012208059366743024589523013670643252); DVK(KP150383733, +0.150383733180435296639271897612501926072238258); DVK(KP852868531, +0.852868531952443209628250963940074071936020296); DVK(KP173648177, +0.173648177666930348851716626769314796000375677); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { V T5, Ty, Tm, Ti, Tw, Th, Tj, To, Tb, Tv, Ta, Tc, Tn; { V T1, T2, T3, T4; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); T4 = VADD(T2, T3); T5 = VFNMS(LDK(KP500000000), T4, T1); Ty = VADD(T1, T4); Tm = VMUL(LDK(KP866025403), VSUB(T2, T3)); } { V Td, Tg, Te, Tf; Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Tf = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); Tg = VADD(Te, Tf); Ti = VSUB(Te, Tf); Tw = VADD(Td, Tg); Th = VFNMS(LDK(KP500000000), Tg, Td); Tj = VFNMS(LDK(KP852868531), Ti, VMUL(LDK(KP173648177), Th)); To = VFMA(LDK(KP150383733), Ti, VMUL(LDK(KP984807753), Th)); } { V T6, T9, T7, T8; T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); T9 = VADD(T7, T8); Tb = VSUB(T7, T8); Tv = VADD(T6, T9); Ta = VFNMS(LDK(KP500000000), T9, T6); Tc = VFNMS(LDK(KP556670399), Tb, VMUL(LDK(KP766044443), Ta)); Tn = VFMA(LDK(KP663413948), Tb, VMUL(LDK(KP642787609), Ta)); } { V Tx, Tz, TA, Tt, Tu; Tx = VBYI(VMUL(LDK(KP866025403), VSUB(Tv, Tw))); Tz = VADD(Tv, Tw); TA = VFNMS(LDK(KP500000000), Tz, Ty); ST(&(xo[WS(os, 3)]), VADD(Tx, TA), ovs, &(xo[WS(os, 1)])); ST(&(xo[0]), VADD(Ty, Tz), ovs, &(xo[0])); ST(&(xo[WS(os, 6)]), VSUB(TA, Tx), ovs, &(xo[0])); Tt = VFMA(LDK(KP852868531), Tb, VFMA(LDK(KP173648177), Ta, VFMA(LDK(KP296198132), Ti, VFNMS(LDK(KP939692620), Th, T5)))); Tu = VBYI(VSUB(VFMA(LDK(KP984807753), Ta, VFMA(LDK(KP813797681), Ti, VFNMS(LDK(KP150383733), Tb, VMUL(LDK(KP342020143), Th)))), Tm)); ST(&(xo[WS(os, 7)]), VSUB(Tt, Tu), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 2)]), VADD(Tt, Tu), ovs, &(xo[0])); { V Tl, Ts, Tq, Tr, Tk, Tp; Tk = VADD(Tc, Tj); Tl = VADD(T5, Tk); Ts = VFMA(LDK(KP866025403), VSUB(To, Tn), VFNMS(LDK(KP500000000), Tk, T5)); Tp = VADD(Tn, To); Tq = VBYI(VADD(Tm, Tp)); Tr = VBYI(VADD(Tm, VFNMS(LDK(KP500000000), Tp, VMUL(LDK(KP866025403), VSUB(Tc, Tj))))); ST(&(xo[WS(os, 8)]), VSUB(Tl, Tq), ovs, &(xo[0])); ST(&(xo[WS(os, 5)]), VSUB(Ts, Tr), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 1)]), VADD(Tl, Tq), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 4)]), VADD(Tr, Ts), ovs, &(xo[0])); } } } } VLEAVE(); } static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), {30, 10, 16, 0}, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1bv_9) (planner *p) { X(kdft_register) (p, n1bv_9, &desc); } #endif