/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:04:51 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include dft/simd/n1f.h */ /* * This function contains 48 FP additions, 20 FP multiplications, * (or, 30 additions, 2 multiplications, 18 fused multiply/add), * 27 stack variables, 2 constants, and 24 memory accesses */ #include "dft/simd/n1f.h" static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { V T5, Ta, TG, TF, TB, Tt, Ti, Tm, TJ, TI, TA, Tp; { V T1, T6, T4, Tr, T9, Ts; T1 = LD(&(xi[0]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); { V T2, T3, T7, T8; T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T4 = VADD(T2, T3); Tr = VSUB(T3, T2); T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T9 = VADD(T7, T8); Ts = VSUB(T8, T7); } T5 = VFNMS(LDK(KP500000000), T4, T1); Ta = VFNMS(LDK(KP500000000), T9, T6); TG = VADD(T6, T9); TF = VADD(T1, T4); TB = VADD(Tr, Ts); Tt = VSUB(Tr, Ts); } { V Tk, Tn, Te, Tl, Th, To; Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); { V Tc, Td, Tf, Tg; Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Te = VSUB(Tc, Td); Tl = VADD(Td, Tc); Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Th = VSUB(Tf, Tg); To = VADD(Tf, Tg); } Ti = VADD(Te, Th); Tm = VFNMS(LDK(KP500000000), Tl, Tk); TJ = VADD(Tn, To); TI = VADD(Tk, Tl); TA = VSUB(Te, Th); Tp = VFNMS(LDK(KP500000000), To, Tn); } { V TH, TK, TL, TM; TH = VSUB(TF, TG); TK = VSUB(TI, TJ); ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)])); TL = VADD(TF, TG); TM = VADD(TI, TJ); ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0])); ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0])); } { V Tj, Tv, Tu, Tw, Tb, Tq; Tb = VSUB(T5, Ta); Tj = VFMA(LDK(KP866025403), Ti, Tb); Tv = VFNMS(LDK(KP866025403), Ti, Tb); Tq = VSUB(Tm, Tp); Tu = VFNMS(LDK(KP866025403), Tt, Tq); Tw = VFMA(LDK(KP866025403), Tt, Tq); ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)])); } { V TC, TE, Tz, TD, Tx, Ty; TC = VMUL(LDK(KP866025403), VSUB(TA, TB)); TE = VMUL(LDK(KP866025403), VADD(TB, TA)); Tx = VADD(T5, Ta); Ty = VADD(Tm, Tp); Tz = VSUB(Tx, Ty); TD = VADD(Tx, Ty); ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0])); ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0])); ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0])); } } } VLEAVE(); } static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1fv_12) (planner *p) { X(kdft_register) (p, n1fv_12, &desc); } #else /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include dft/simd/n1f.h */ /* * This function contains 48 FP additions, 8 FP multiplications, * (or, 44 additions, 4 multiplications, 4 fused multiply/add), * 27 stack variables, 2 constants, and 24 memory accesses */ #include "dft/simd/n1f.h" static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { DVK(KP500000000, +0.500000000000000000000000000000000000000000000); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu; { V T1, T6, T4, Tw, T9, Tx; T1 = LD(&(xi[0]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); { V T2, T3, T7, T8; T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T4 = VADD(T2, T3); Tw = VSUB(T3, T2); T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); T9 = VADD(T7, T8); Tx = VSUB(T8, T7); } T5 = VADD(T1, T4); Ta = VADD(T6, T9); TJ = VADD(Tw, Tx); Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx)); Tq = VFNMS(LDK(KP500000000), T9, T6); Tp = VFNMS(LDK(KP500000000), T4, T1); } { V Tc, Th, Tf, Ts, Tk, Tt; Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); { V Td, Te, Ti, Tj; Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Tf = VADD(Td, Te); Ts = VSUB(Te, Td); Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Tk = VADD(Ti, Tj); Tt = VSUB(Tj, Ti); } Tg = VADD(Tc, Tf); Tl = VADD(Th, Tk); TI = VADD(Ts, Tt); TA = VFNMS(LDK(KP500000000), Tk, Th); Tz = VFNMS(LDK(KP500000000), Tf, Tc); Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt)); } { V Tb, Tm, Tn, To; Tb = VSUB(T5, Ta); Tm = VBYI(VSUB(Tg, Tl)); ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)])); Tn = VADD(T5, Ta); To = VADD(Tg, Tl); ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0])); ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0])); } { V Tv, TE, TC, TD, Tr, TB; Tr = VSUB(Tp, Tq); Tv = VSUB(Tr, Tu); TE = VADD(Tr, Tu); TB = VSUB(Tz, TA); TC = VBYI(VADD(Ty, TB)); TD = VBYI(VSUB(Ty, TB)); ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)])); ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)])); } { V TK, TM, TH, TL, TF, TG; TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ))); TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI))); TF = VADD(Tp, Tq); TG = VADD(Tz, TA); TH = VSUB(TF, TG); TL = VADD(TF, TG); ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0])); ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0])); ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0])); ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0])); } } } VLEAVE(); } static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 }; void XSIMD(codelet_n1fv_12) (planner *p) { X(kdft_register) (p, n1fv_12, &desc); } #endif