/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:05:19 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_notw.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name n2sv_4 -with-ostride 1 -include dft/simd/n2s.h -store-multiple 4 */ /* * This function contains 16 FP additions, 0 FP multiplications, * (or, 16 additions, 0 multiplications, 0 fused multiply/add), * 17 stack variables, 0 constants, and 18 memory accesses */ #include "dft/simd/n2s.h" static void n2sv_4(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { { INT i; for (i = v; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * ivs), ii = ii + ((2 * VL) * ivs), ro = ro + ((2 * VL) * ovs), io = io + ((2 * VL) * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { V T3, Tb, T9, Tf, T6, Ta, Te, Tg; { V T1, T2, T7, T8; T1 = LD(&(ri[0]), ivs, &(ri[0])); T2 = LD(&(ri[WS(is, 2)]), ivs, &(ri[0])); T3 = VADD(T1, T2); Tb = VSUB(T1, T2); T7 = LD(&(ii[0]), ivs, &(ii[0])); T8 = LD(&(ii[WS(is, 2)]), ivs, &(ii[0])); T9 = VSUB(T7, T8); Tf = VADD(T7, T8); } { V T4, T5, Tc, Td; T4 = LD(&(ri[WS(is, 1)]), ivs, &(ri[WS(is, 1)])); T5 = LD(&(ri[WS(is, 3)]), ivs, &(ri[WS(is, 1)])); T6 = VADD(T4, T5); Ta = VSUB(T4, T5); Tc = LD(&(ii[WS(is, 1)]), ivs, &(ii[WS(is, 1)])); Td = LD(&(ii[WS(is, 3)]), ivs, &(ii[WS(is, 1)])); Te = VSUB(Tc, Td); Tg = VADD(Tc, Td); } { V Th, Ti, Tj, Tk; Th = VSUB(T3, T6); STM4(&(ro[2]), Th, ovs, &(ro[0])); Ti = VSUB(Tf, Tg); STM4(&(io[2]), Ti, ovs, &(io[0])); Tj = VADD(T3, T6); STM4(&(ro[0]), Tj, ovs, &(ro[0])); Tk = VADD(Tf, Tg); STM4(&(io[0]), Tk, ovs, &(io[0])); { V Tl, Tm, Tn, To; Tl = VSUB(T9, Ta); STM4(&(io[1]), Tl, ovs, &(io[1])); Tm = VADD(Tb, Te); STM4(&(ro[1]), Tm, ovs, &(ro[1])); Tn = VADD(Ta, T9); STM4(&(io[3]), Tn, ovs, &(io[1])); STN4(&(io[0]), Tk, Tl, Ti, Tn, ovs); To = VSUB(Tb, Te); STM4(&(ro[3]), To, ovs, &(ro[1])); STN4(&(ro[0]), Tj, Tm, Th, To, ovs); } } } } VLEAVE(); } static const kdft_desc desc = { 4, XSIMD_STRING("n2sv_4"), {16, 0, 0, 0}, &GENUS, 0, 1, 0, 0 }; void XSIMD(codelet_n2sv_4) (planner *p) { X(kdft_register) (p, n2sv_4, &desc); } #else /* Generated by: ../../../genfft/gen_notw.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name n2sv_4 -with-ostride 1 -include dft/simd/n2s.h -store-multiple 4 */ /* * This function contains 16 FP additions, 0 FP multiplications, * (or, 16 additions, 0 multiplications, 0 fused multiply/add), * 17 stack variables, 0 constants, and 18 memory accesses */ #include "dft/simd/n2s.h" static void n2sv_4(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) { { INT i; for (i = v; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * ivs), ii = ii + ((2 * VL) * ivs), ro = ro + ((2 * VL) * ovs), io = io + ((2 * VL) * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { V T3, Tb, T9, Tf, T6, Ta, Te, Tg; { V T1, T2, T7, T8; T1 = LD(&(ri[0]), ivs, &(ri[0])); T2 = LD(&(ri[WS(is, 2)]), ivs, &(ri[0])); T3 = VADD(T1, T2); Tb = VSUB(T1, T2); T7 = LD(&(ii[0]), ivs, &(ii[0])); T8 = LD(&(ii[WS(is, 2)]), ivs, &(ii[0])); T9 = VSUB(T7, T8); Tf = VADD(T7, T8); } { V T4, T5, Tc, Td; T4 = LD(&(ri[WS(is, 1)]), ivs, &(ri[WS(is, 1)])); T5 = LD(&(ri[WS(is, 3)]), ivs, &(ri[WS(is, 1)])); T6 = VADD(T4, T5); Ta = VSUB(T4, T5); Tc = LD(&(ii[WS(is, 1)]), ivs, &(ii[WS(is, 1)])); Td = LD(&(ii[WS(is, 3)]), ivs, &(ii[WS(is, 1)])); Te = VSUB(Tc, Td); Tg = VADD(Tc, Td); } { V Th, Ti, Tj, Tk; Th = VSUB(T3, T6); STM4(&(ro[2]), Th, ovs, &(ro[0])); Ti = VSUB(Tf, Tg); STM4(&(io[2]), Ti, ovs, &(io[0])); Tj = VADD(T3, T6); STM4(&(ro[0]), Tj, ovs, &(ro[0])); Tk = VADD(Tf, Tg); STM4(&(io[0]), Tk, ovs, &(io[0])); { V Tl, Tm, Tn, To; Tl = VSUB(T9, Ta); STM4(&(io[1]), Tl, ovs, &(io[1])); Tm = VADD(Tb, Te); STM4(&(ro[1]), Tm, ovs, &(ro[1])); Tn = VADD(Ta, T9); STM4(&(io[3]), Tn, ovs, &(io[1])); STN4(&(io[0]), Tk, Tl, Ti, Tn, ovs); To = VSUB(Tb, Te); STM4(&(ro[3]), To, ovs, &(ro[1])); STN4(&(ro[0]), Tj, Tm, Th, To, ovs); } } } } VLEAVE(); } static const kdft_desc desc = { 4, XSIMD_STRING("n2sv_4"), {16, 0, 0, 0}, &GENUS, 0, 1, 0, 0 }; void XSIMD(codelet_n2sv_4) (planner *p) { X(kdft_register) (p, n2sv_4, &desc); } #endif