/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:14 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include dft/simd/q1b.h -sign 1 */ /* * This function contains 44 FP additions, 32 FP multiplications, * (or, 36 additions, 24 multiplications, 8 fused multiply/add), * 22 stack variables, 0 constants, and 32 memory accesses */ #include "dft/simd/q1b.h" static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) { { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) { V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th; V Tl; { V T1, T2, Ty, Tz; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T3 = VSUB(T1, T2); T9 = VADD(T1, T2); Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); TA = VSUB(Ty, Tz); TG = VADD(Ty, Tz); } { V TB, TC, T4, T5; TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); TD = VSUB(TB, TC); TH = VADD(TB, TC); T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T6 = VSUB(T4, T5); Ta = VADD(T4, T5); } { V Tc, Td, Tn, To; Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); Te = VSUB(Tc, Td); Tk = VADD(Tc, Td); Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); Tp = VSUB(Tn, To); Tv = VADD(Tn, To); } { V Tq, Tr, Tf, Tg; Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); Ts = VSUB(Tq, Tr); Tw = VADD(Tq, Tr); Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); Th = VSUB(Tf, Tg); Tl = VADD(Tf, Tg); } ST(&(x[0]), VADD(T9, Ta), ms, &(x[0])); ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); { V T7, Ti, Tt, TE; T7 = BYTW(&(W[TWVL * 4]), VFNMSI(T6, T3)); ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)])); Ti = BYTW(&(W[TWVL * 4]), VFNMSI(Th, Te)); ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)])); Tt = BYTW(&(W[TWVL * 4]), VFNMSI(Ts, Tp)); ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)])); TE = BYTW(&(W[TWVL * 4]), VFNMSI(TD, TA)); ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); } { V T8, Tj, Tu, TF; T8 = BYTW(&(W[0]), VFMAI(T6, T3)); ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)])); Tj = BYTW(&(W[0]), VFMAI(Th, Te)); ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)])); Tu = BYTW(&(W[0]), VFMAI(Ts, Tp)); ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)])); TF = BYTW(&(W[0]), VFMAI(TD, TA)); ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)])); } { V Tb, Tm, Tx, TI; Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta)); ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)])); Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl)); ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)])); Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw)); ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)])); TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH)); ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, {36, 24, 8, 0}, 0, 0, 0 }; void XSIMD(codelet_q1bv_4) (planner *p) { X(kdft_difsq_register) (p, q1bv_4, &desc); } #else /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include dft/simd/q1b.h -sign 1 */ /* * This function contains 44 FP additions, 24 FP multiplications, * (or, 44 additions, 24 multiplications, 0 fused multiply/add), * 22 stack variables, 0 constants, and 32 memory accesses */ #include "dft/simd/q1b.h" static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) { { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) { V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th; V Tl; { V T1, T2, Ty, Tz; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T3 = VSUB(T1, T2); T9 = VADD(T1, T2); Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); TA = VSUB(Ty, Tz); TG = VADD(Ty, Tz); } { V TB, TC, T4, T5; TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); TD = VBYI(VSUB(TB, TC)); TH = VADD(TB, TC); T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T6 = VBYI(VSUB(T4, T5)); Ta = VADD(T4, T5); } { V Tc, Td, Tn, To; Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); Te = VSUB(Tc, Td); Tk = VADD(Tc, Td); Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); Tp = VSUB(Tn, To); Tv = VADD(Tn, To); } { V Tq, Tr, Tf, Tg; Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); Ts = VBYI(VSUB(Tq, Tr)); Tw = VADD(Tq, Tr); Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); Th = VBYI(VSUB(Tf, Tg)); Tl = VADD(Tf, Tg); } ST(&(x[0]), VADD(T9, Ta), ms, &(x[0])); ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); { V T7, Ti, Tt, TE; T7 = BYTW(&(W[TWVL * 4]), VSUB(T3, T6)); ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)])); Ti = BYTW(&(W[TWVL * 4]), VSUB(Te, Th)); ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)])); Tt = BYTW(&(W[TWVL * 4]), VSUB(Tp, Ts)); ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)])); TE = BYTW(&(W[TWVL * 4]), VSUB(TA, TD)); ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); } { V T8, Tj, Tu, TF; T8 = BYTW(&(W[0]), VADD(T3, T6)); ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)])); Tj = BYTW(&(W[0]), VADD(Te, Th)); ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)])); Tu = BYTW(&(W[0]), VADD(Tp, Ts)); ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)])); TF = BYTW(&(W[0]), VADD(TA, TD)); ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)])); } { V Tb, Tm, Tx, TI; Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta)); ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)])); Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl)); ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)])); Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw)); ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)])); TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH)); ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, {44, 24, 0, 0}, 0, 0, 0 }; void XSIMD(codelet_q1bv_4) (planner *p) { X(kdft_difsq_register) (p, q1bv_4, &desc); } #endif