/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:05:57 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1bv_6 -include dft/simd/t1b.h -sign 1 */ /* * This function contains 23 FP additions, 18 FP multiplications, * (or, 17 additions, 12 multiplications, 6 fused multiply/add), * 19 stack variables, 2 constants, and 12 memory accesses */ #include "dft/simd/t1b.h" static void t1bv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP500000000, +0.500000000000000000000000000000000000000000000); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) { V T4, Ti, Te, Tk, T9, Tj, T1, T3, T2; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T3 = BYTW(&(W[TWVL * 4]), T2); T4 = VSUB(T1, T3); Ti = VADD(T1, T3); { V Tb, Td, Ta, Tc; Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tb = BYTW(&(W[TWVL * 6]), Ta); Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Td = BYTW(&(W[0]), Tc); Te = VSUB(Tb, Td); Tk = VADD(Tb, Td); } { V T6, T8, T5, T7; T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T6 = BYTW(&(W[TWVL * 2]), T5); T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T8 = BYTW(&(W[TWVL * 8]), T7); T9 = VSUB(T6, T8); Tj = VADD(T6, T8); } { V Th, Tf, Tg, Tn, Tl, Tm; Th = VMUL(LDK(KP866025403), VSUB(T9, Te)); Tf = VADD(T9, Te); Tg = VFNMS(LDK(KP500000000), Tf, T4); ST(&(x[WS(rs, 1)]), VFMAI(Th, Tg), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 5)]), VFNMSI(Th, Tg), ms, &(x[WS(rs, 1)])); Tn = VMUL(LDK(KP866025403), VSUB(Tj, Tk)); Tl = VADD(Tj, Tk); Tm = VFNMS(LDK(KP500000000), Tl, Ti); ST(&(x[WS(rs, 2)]), VFNMSI(Tn, Tm), ms, &(x[0])); ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VFMAI(Tn, Tm), ms, &(x[0])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 6, XSIMD_STRING("t1bv_6"), twinstr, &GENUS, {17, 12, 6, 0}, 0, 0, 0 }; void XSIMD(codelet_t1bv_6) (planner *p) { X(kdft_dit_register) (p, t1bv_6, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1bv_6 -include dft/simd/t1b.h -sign 1 */ /* * This function contains 23 FP additions, 14 FP multiplications, * (or, 21 additions, 12 multiplications, 2 fused multiply/add), * 19 stack variables, 2 constants, and 12 memory accesses */ #include "dft/simd/t1b.h" static void t1bv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP500000000, +0.500000000000000000000000000000000000000000000); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) { V Tf, Ti, Ta, Tk, T5, Tj, Tc, Te, Td; Tc = LD(&(x[0]), ms, &(x[0])); Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Te = BYTW(&(W[TWVL * 4]), Td); Tf = VSUB(Tc, Te); Ti = VADD(Tc, Te); { V T7, T9, T6, T8; T6 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T7 = BYTW(&(W[TWVL * 6]), T6); T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T9 = BYTW(&(W[0]), T8); Ta = VSUB(T7, T9); Tk = VADD(T7, T9); } { V T2, T4, T1, T3; T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T2 = BYTW(&(W[TWVL * 2]), T1); T3 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T4 = BYTW(&(W[TWVL * 8]), T3); T5 = VSUB(T2, T4); Tj = VADD(T2, T4); } { V Tb, Tg, Th, Tn, Tl, Tm; Tb = VBYI(VMUL(LDK(KP866025403), VSUB(T5, Ta))); Tg = VADD(T5, Ta); Th = VFNMS(LDK(KP500000000), Tg, Tf); ST(&(x[WS(rs, 1)]), VADD(Tb, Th), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VADD(Tf, Tg), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 5)]), VSUB(Th, Tb), ms, &(x[WS(rs, 1)])); Tn = VBYI(VMUL(LDK(KP866025403), VSUB(Tj, Tk))); Tl = VADD(Tj, Tk); Tm = VFNMS(LDK(KP500000000), Tl, Ti); ST(&(x[WS(rs, 2)]), VSUB(Tm, Tn), ms, &(x[0])); ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VADD(Tn, Tm), ms, &(x[0])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 6, XSIMD_STRING("t1bv_6"), twinstr, &GENUS, {21, 12, 2, 0}, 0, 0, 0 }; void XSIMD(codelet_t1bv_6) (planner *p) { X(kdft_dit_register) (p, t1bv_6, &desc); } #endif