/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:05:27 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fv_7 -include dft/simd/t1f.h */ /* * This function contains 36 FP additions, 36 FP multiplications, * (or, 15 additions, 15 multiplications, 21 fused multiply/add), * 30 stack variables, 6 constants, and 14 memory accesses */ #include "dft/simd/t1f.h" static void t1fv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP801937735, +0.801937735804838252472204639014890102331838324); DVK(KP974927912, +0.974927912181823607018131682993931217232785801); DVK(KP554958132, +0.554958132087371191422194871006410481067288862); DVK(KP900968867, +0.900968867902419126236102319507445051165919162); DVK(KP692021471, +0.692021471630095869627814897002069140197260599); DVK(KP356895867, +0.356895867892209443894399510021300583399127187); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) { V T1, Tk, Tm, Tl, T6, Tg, Tb, Th, Tu, Tp; T1 = LD(&(x[0]), ms, &(x[0])); { V T3, T5, Tf, Td, Ta, T8; { V T2, T4, Te, Tc, T9, T7; T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T3 = BYTWJ(&(W[0]), T2); T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T5 = BYTWJ(&(W[TWVL * 10]), T4); Te = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tf = BYTWJ(&(W[TWVL * 6]), Te); Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Td = BYTWJ(&(W[TWVL * 4]), Tc); T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Ta = BYTWJ(&(W[TWVL * 8]), T9); T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T8 = BYTWJ(&(W[TWVL * 2]), T7); } Tk = VSUB(T5, T3); Tm = VSUB(Ta, T8); Tl = VSUB(Tf, Td); T6 = VADD(T3, T5); Tg = VADD(Td, Tf); Tb = VADD(T8, Ta); Th = VFNMS(LDK(KP356895867), T6, Tg); Tu = VFNMS(LDK(KP356895867), Tg, Tb); Tp = VFNMS(LDK(KP356895867), Tb, T6); } ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0])); { V Tw, Ty, Tv, Tx; Tv = VFNMS(LDK(KP692021471), Tu, T6); Tw = VFNMS(LDK(KP900968867), Tv, T1); Tx = VFNMS(LDK(KP554958132), Tk, Tm); Ty = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tx, Tl)); ST(&(x[WS(rs, 4)]), VFNMSI(Ty, Tw), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VFMAI(Ty, Tw), ms, &(x[WS(rs, 1)])); } { V Tj, To, Ti, Tn; Ti = VFNMS(LDK(KP692021471), Th, Tb); Tj = VFNMS(LDK(KP900968867), Ti, T1); Tn = VFMA(LDK(KP554958132), Tm, Tl); To = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tn, Tk)); ST(&(x[WS(rs, 5)]), VFNMSI(To, Tj), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), VFMAI(To, Tj), ms, &(x[0])); } { V Tr, Tt, Tq, Ts; Tq = VFNMS(LDK(KP692021471), Tp, Tg); Tr = VFNMS(LDK(KP900968867), Tq, T1); Ts = VFMA(LDK(KP554958132), Tl, Tk); Tt = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Ts, Tm)); ST(&(x[WS(rs, 6)]), VFNMSI(Tt, Tr), ms, &(x[0])); ST(&(x[WS(rs, 1)]), VFMAI(Tt, Tr), ms, &(x[WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 7, XSIMD_STRING("t1fv_7"), twinstr, &GENUS, {15, 15, 21, 0}, 0, 0, 0 }; void XSIMD(codelet_t1fv_7) (planner *p) { X(kdft_dit_register) (p, t1fv_7, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fv_7 -include dft/simd/t1f.h */ /* * This function contains 36 FP additions, 30 FP multiplications, * (or, 24 additions, 18 multiplications, 12 fused multiply/add), * 21 stack variables, 6 constants, and 14 memory accesses */ #include "dft/simd/t1f.h" static void t1fv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP900968867, +0.900968867902419126236102319507445051165919162); DVK(KP222520933, +0.222520933956314404288902564496794759466355569); DVK(KP623489801, +0.623489801858733530525004884004239810632274731); DVK(KP781831482, +0.781831482468029808708444526674057750232334519); DVK(KP974927912, +0.974927912181823607018131682993931217232785801); DVK(KP433883739, +0.433883739117558120475768332848358754609990728); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) { V T1, Tg, Tj, T6, Ti, Tb, Tk, Tp, To; T1 = LD(&(x[0]), ms, &(x[0])); { V Td, Tf, Tc, Te; Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Td = BYTWJ(&(W[TWVL * 4]), Tc); Te = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tf = BYTWJ(&(W[TWVL * 6]), Te); Tg = VADD(Td, Tf); Tj = VSUB(Tf, Td); } { V T3, T5, T2, T4; T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T3 = BYTWJ(&(W[0]), T2); T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T5 = BYTWJ(&(W[TWVL * 10]), T4); T6 = VADD(T3, T5); Ti = VSUB(T5, T3); } { V T8, Ta, T7, T9; T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T8 = BYTWJ(&(W[TWVL * 2]), T7); T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Ta = BYTWJ(&(W[TWVL * 8]), T9); Tb = VADD(T8, Ta); Tk = VSUB(Ta, T8); } ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0])); Tp = VBYI(VFMA(LDK(KP433883739), Ti, VFNMS(LDK(KP781831482), Tk, VMUL(LDK(KP974927912), Tj)))); To = VFMA(LDK(KP623489801), Tb, VFNMS(LDK(KP222520933), Tg, VFNMS(LDK(KP900968867), T6, T1))); ST(&(x[WS(rs, 4)]), VSUB(To, Tp), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)])); { V Tl, Th, Tn, Tm; Tl = VBYI(VFNMS(LDK(KP781831482), Tj, VFNMS(LDK(KP433883739), Tk, VMUL(LDK(KP974927912), Ti)))); Th = VFMA(LDK(KP623489801), Tg, VFNMS(LDK(KP900968867), Tb, VFNMS(LDK(KP222520933), T6, T1))); ST(&(x[WS(rs, 5)]), VSUB(Th, Tl), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), VADD(Th, Tl), ms, &(x[0])); Tn = VBYI(VFMA(LDK(KP781831482), Ti, VFMA(LDK(KP974927912), Tk, VMUL(LDK(KP433883739), Tj)))); Tm = VFMA(LDK(KP623489801), T6, VFNMS(LDK(KP900968867), Tg, VFNMS(LDK(KP222520933), Tb, T1))); ST(&(x[WS(rs, 6)]), VSUB(Tm, Tn), ms, &(x[0])); ST(&(x[WS(rs, 1)]), VADD(Tm, Tn), ms, &(x[WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 7, XSIMD_STRING("t1fv_7"), twinstr, &GENUS, {24, 18, 12, 0}, 0, 0, 0 }; void XSIMD(codelet_t1fv_7) (planner *p) { X(kdft_dit_register) (p, t1fv_7, &desc); } #endif