/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:05:27 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include dft/simd/t1f.h */ /* * This function contains 54 FP additions, 54 FP multiplications, * (or, 20 additions, 20 multiplications, 34 fused multiply/add), * 50 stack variables, 19 constants, and 18 memory accesses */ #include "dft/simd/t1f.h" static void t1fv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP939692620, +0.939692620785908384054109277324731469936208134); DVK(KP852868531, +0.852868531952443209628250963940074071936020296); DVK(KP666666666, +0.666666666666666666666666666666666666666666667); DVK(KP879385241, +0.879385241571816768108218554649462939872416269); DVK(KP984807753, +0.984807753012208059366743024589523013670643252); DVK(KP898197570, +0.898197570222573798468955502359086394667167570); DVK(KP673648177, +0.673648177666930348851716626769314796000375677); DVK(KP826351822, +0.826351822333069651148283373230685203999624323); DVK(KP420276625, +0.420276625461206169731530603237061658838781920); DVK(KP907603734, +0.907603734547952313649323976213898122064543220); DVK(KP347296355, +0.347296355333860697703433253538629592000751354); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP203604859, +0.203604859554852403062088995281827210665664861); DVK(KP726681596, +0.726681596905677465811651808188092531873167623); DVK(KP152703644, +0.152703644666139302296566746461370407999248646); DVK(KP968908795, +0.968908795874236621082202410917456709164223497); DVK(KP439692620, +0.439692620785908384054109277324731469936208134); DVK(KP586256827, +0.586256827714544512072145703099641959914944179); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { V T1, T6, TD, Tf, Tn, Ts, Tv, Tt, Tu, Tw, TA, TK, TJ, TG, TF; T1 = LD(&(x[0]), ms, &(x[0])); { V T3, T5, T2, T4; T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T3 = BYTWJ(&(W[TWVL * 4]), T2); T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T5 = BYTWJ(&(W[TWVL * 10]), T4); T6 = VADD(T3, T5); TD = VSUB(T5, T3); } { V T9, Th, Tb, Td, Te, Tj, Tl, Tm, T8, Tg; T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T9 = BYTWJ(&(W[0]), T8); Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Th = BYTWJ(&(W[TWVL * 2]), Tg); { V Ta, Tc, Ti, Tk; Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tb = BYTWJ(&(W[TWVL * 6]), Ta); Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Td = BYTWJ(&(W[TWVL * 12]), Tc); Te = VADD(Tb, Td); Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tj = BYTWJ(&(W[TWVL * 8]), Ti); Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Tl = BYTWJ(&(W[TWVL * 14]), Tk); Tm = VADD(Tj, Tl); } Tf = VADD(T9, Te); Tn = VADD(Th, Tm); Ts = VFNMS(LDK(KP500000000), Tm, Th); Tv = VFNMS(LDK(KP500000000), Te, T9); Tt = VSUB(Tb, Td); Tu = VSUB(Tl, Tj); Tw = VFNMS(LDK(KP586256827), Tv, Tu); TA = VFNMS(LDK(KP439692620), Tt, Ts); TK = VFMA(LDK(KP968908795), Tv, Tt); TJ = VFNMS(LDK(KP152703644), Tu, Ts); TG = VFNMS(LDK(KP726681596), Tt, Tv); TF = VFMA(LDK(KP203604859), Ts, Tu); } { V Tq, T7, To, Tp; Tq = VMUL(LDK(KP866025403), VSUB(Tn, Tf)); T7 = VADD(T1, T6); To = VADD(Tf, Tn); Tp = VFNMS(LDK(KP500000000), To, T7); ST(&(x[0]), VADD(T7, To), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VFMAI(Tq, Tp), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 6)]), VFNMSI(Tq, Tp), ms, &(x[0])); } { V Ty, TC, TM, TR, Tr, TI, TO, Tx, TB; Tx = VFNMS(LDK(KP347296355), Tw, Tt); Ty = VFNMS(LDK(KP907603734), Tx, Ts); TB = VFNMS(LDK(KP420276625), TA, Tu); TC = VFNMS(LDK(KP826351822), TB, Tv); { V TL, TQ, TN, TH; TL = VFMA(LDK(KP673648177), TK, TJ); TQ = VFNMS(LDK(KP898197570), TG, TF); TM = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), TD, TL)); TR = VFMA(LDK(KP666666666), TL, TQ); Tr = VFNMS(LDK(KP500000000), T6, T1); TN = VFNMS(LDK(KP673648177), TK, TJ); TH = VFMA(LDK(KP898197570), TG, TF); TI = VFMA(LDK(KP852868531), TH, Tr); TO = VFNMS(LDK(KP500000000), TH, TN); } ST(&(x[WS(rs, 1)]), VFNMSI(TM, TI), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 8)]), VFMAI(TM, TI), ms, &(x[0])); { V Tz, TE, TP, TS; Tz = VFNMS(LDK(KP939692620), Ty, Tr); TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), TD, TC)); ST(&(x[WS(rs, 2)]), VFNMSI(TE, Tz), ms, &(x[0])); ST(&(x[WS(rs, 7)]), VFMAI(TE, Tz), ms, &(x[WS(rs, 1)])); TP = VFMA(LDK(KP852868531), TO, Tr); TS = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TR, TD)); ST(&(x[WS(rs, 5)]), VFNMSI(TS, TP), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 4)]), VFMAI(TS, TP), ms, &(x[0])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 9, XSIMD_STRING("t1fv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 }; void XSIMD(codelet_t1fv_9) (planner *p) { X(kdft_dit_register) (p, t1fv_9, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include dft/simd/t1f.h */ /* * This function contains 54 FP additions, 42 FP multiplications, * (or, 38 additions, 26 multiplications, 16 fused multiply/add), * 38 stack variables, 14 constants, and 18 memory accesses */ #include "dft/simd/t1f.h" static void t1fv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP939692620, +0.939692620785908384054109277324731469936208134); DVK(KP296198132, +0.296198132726023843175338011893050938967728390); DVK(KP852868531, +0.852868531952443209628250963940074071936020296); DVK(KP173648177, +0.173648177666930348851716626769314796000375677); DVK(KP556670399, +0.556670399226419366452912952047023132968291906); DVK(KP766044443, +0.766044443118978035202392650555416673935832457); DVK(KP642787609, +0.642787609686539326322643409907263432907559884); DVK(KP663413948, +0.663413948168938396205421319635891297216863310); DVK(KP984807753, +0.984807753012208059366743024589523013670643252); DVK(KP150383733, +0.150383733180435296639271897612501926072238258); DVK(KP342020143, +0.342020143325668733044099614682259580763083368); DVK(KP813797681, +0.813797681349373692844693217248393223289101568); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); DVK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) { V T1, T6, TA, Tt, Tf, Ts, Tw, Tn, Tv; T1 = LD(&(x[0]), ms, &(x[0])); { V T3, T5, T2, T4; T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T3 = BYTWJ(&(W[TWVL * 4]), T2); T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T5 = BYTWJ(&(W[TWVL * 10]), T4); T6 = VADD(T3, T5); TA = VMUL(LDK(KP866025403), VSUB(T5, T3)); } { V T9, Td, Tb, T8, Tc, Ta, Te; T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T9 = BYTWJ(&(W[0]), T8); Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Td = BYTWJ(&(W[TWVL * 12]), Tc); Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tb = BYTWJ(&(W[TWVL * 6]), Ta); Tt = VSUB(Td, Tb); Te = VADD(Tb, Td); Tf = VADD(T9, Te); Ts = VFNMS(LDK(KP500000000), Te, T9); } { V Th, Tl, Tj, Tg, Tk, Ti, Tm; Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Th = BYTWJ(&(W[TWVL * 2]), Tg); Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Tl = BYTWJ(&(W[TWVL * 14]), Tk); Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tj = BYTWJ(&(W[TWVL * 8]), Ti); Tw = VSUB(Tl, Tj); Tm = VADD(Tj, Tl); Tn = VADD(Th, Tm); Tv = VFNMS(LDK(KP500000000), Tm, Th); } { V Tq, T7, To, Tp; Tq = VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Tf))); T7 = VADD(T1, T6); To = VADD(Tf, Tn); Tp = VFNMS(LDK(KP500000000), To, T7); ST(&(x[0]), VADD(T7, To), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VADD(Tp, Tq), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 6)]), VSUB(Tp, Tq), ms, &(x[0])); } { V TI, TB, TC, TD, Tu, Tx, Ty, Tr, TH; TI = VBYI(VSUB(VFNMS(LDK(KP342020143), Tv, VFNMS(LDK(KP150383733), Tt, VFNMS(LDK(KP984807753), Ts, VMUL(LDK(KP813797681), Tw)))), TA)); TB = VFNMS(LDK(KP642787609), Ts, VMUL(LDK(KP663413948), Tt)); TC = VFNMS(LDK(KP984807753), Tv, VMUL(LDK(KP150383733), Tw)); TD = VADD(TB, TC); Tu = VFMA(LDK(KP766044443), Ts, VMUL(LDK(KP556670399), Tt)); Tx = VFMA(LDK(KP173648177), Tv, VMUL(LDK(KP852868531), Tw)); Ty = VADD(Tu, Tx); Tr = VFNMS(LDK(KP500000000), T6, T1); TH = VFMA(LDK(KP173648177), Ts, VFNMS(LDK(KP296198132), Tw, VFNMS(LDK(KP939692620), Tv, VFNMS(LDK(KP852868531), Tt, Tr)))); ST(&(x[WS(rs, 7)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 2)]), VADD(TH, TI), ms, &(x[0])); { V Tz, TE, TF, TG; Tz = VADD(Tr, Ty); TE = VBYI(VADD(TA, TD)); ST(&(x[WS(rs, 8)]), VSUB(Tz, TE), ms, &(x[0])); ST(&(x[WS(rs, 1)]), VADD(TE, Tz), ms, &(x[WS(rs, 1)])); TF = VFMA(LDK(KP866025403), VSUB(TB, TC), VFNMS(LDK(KP500000000), Ty, Tr)); TG = VBYI(VADD(TA, VFNMS(LDK(KP500000000), TD, VMUL(LDK(KP866025403), VSUB(Tx, Tu))))); ST(&(x[WS(rs, 5)]), VSUB(TF, TG), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 4)]), VADD(TF, TG), ms, &(x[0])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 9, XSIMD_STRING("t1fv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 }; void XSIMD(codelet_t1fv_9) (planner *p) { X(kdft_dit_register) (p, t1fv_9, &desc); } #endif