/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:02 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2bv_16 -include dft/simd/t2b.h -sign 1 */ /* * This function contains 87 FP additions, 64 FP multiplications, * (or, 53 additions, 30 multiplications, 34 fused multiply/add), * 36 stack variables, 3 constants, and 32 memory accesses */ #include "dft/simd/t2b.h" static void t2bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP923879532, +0.923879532511286756128183189396788286822416626); DVK(KP707106781, +0.707106781186547524400844362104849039284835938); DVK(KP414213562, +0.414213562373095048801688724209698078569671875); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) { V T4, TW, T9, T19, TD, TI, TZ, T1a, Tf, Tk, Tl, T13, T1c, Tq, Tv; V Tw, T16, T1d, T1, T3, T2; T1 = LD(&(x[0]), ms, &(x[0])); T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); T3 = BYTW(&(W[TWVL * 14]), T2); T4 = VADD(T1, T3); TW = VSUB(T1, T3); { V T6, T8, T5, T7; T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T6 = BYTW(&(W[TWVL * 6]), T5); T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0])); T8 = BYTW(&(W[TWVL * 22]), T7); T9 = VADD(T6, T8); T19 = VSUB(T6, T8); } { V TA, TH, TC, TF, TX, TY; { V Tz, TG, TB, TE; Tz = LD(&(x[WS(rs, 2)]), ms, &(x[0])); TA = BYTW(&(W[TWVL * 2]), Tz); TG = LD(&(x[WS(rs, 6)]), ms, &(x[0])); TH = BYTW(&(W[TWVL * 10]), TG); TB = LD(&(x[WS(rs, 10)]), ms, &(x[0])); TC = BYTW(&(W[TWVL * 18]), TB); TE = LD(&(x[WS(rs, 14)]), ms, &(x[0])); TF = BYTW(&(W[TWVL * 26]), TE); } TD = VADD(TA, TC); TI = VADD(TF, TH); TX = VSUB(TA, TC); TY = VSUB(TF, TH); TZ = VADD(TX, TY); T1a = VSUB(TX, TY); } { V Tc, Tj, Te, Th, T11, T12; { V Tb, Ti, Td, Tg; Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Tc = BYTW(&(W[0]), Tb); Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); Tj = BYTW(&(W[TWVL * 24]), Ti); Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Te = BYTW(&(W[TWVL * 16]), Td); Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Th = BYTW(&(W[TWVL * 8]), Tg); } Tf = VADD(Tc, Te); Tk = VADD(Th, Tj); Tl = VSUB(Tf, Tk); T11 = VSUB(Tc, Te); T12 = VSUB(Th, Tj); T13 = VFNMS(LDK(KP414213562), T12, T11); T1c = VFMA(LDK(KP414213562), T11, T12); } { V Tn, Tu, Tp, Ts, T14, T15; { V Tm, Tt, To, Tr; Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); Tn = BYTW(&(W[TWVL * 28]), Tm); Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); Tu = BYTW(&(W[TWVL * 20]), Tt); To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Tp = BYTW(&(W[TWVL * 12]), To); Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Ts = BYTW(&(W[TWVL * 4]), Tr); } Tq = VADD(Tn, Tp); Tv = VADD(Ts, Tu); Tw = VSUB(Tq, Tv); T14 = VSUB(Tn, Tp); T15 = VSUB(Tu, Ts); T16 = VFNMS(LDK(KP414213562), T15, T14); T1d = VFMA(LDK(KP414213562), T14, T15); } { V Ty, TM, TL, TN; { V Ta, Tx, TJ, TK; Ta = VSUB(T4, T9); Tx = VADD(Tl, Tw); Ty = VFNMS(LDK(KP707106781), Tx, Ta); TM = VFMA(LDK(KP707106781), Tx, Ta); TJ = VSUB(TD, TI); TK = VSUB(Tl, Tw); TL = VFNMS(LDK(KP707106781), TK, TJ); TN = VFMA(LDK(KP707106781), TK, TJ); } ST(&(x[WS(rs, 6)]), VFNMSI(TL, Ty), ms, &(x[0])); ST(&(x[WS(rs, 14)]), VFNMSI(TN, TM), ms, &(x[0])); ST(&(x[WS(rs, 10)]), VFMAI(TL, Ty), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VFMAI(TN, TM), ms, &(x[0])); } { V T1k, T1o, T1n, T1p; { V T1i, T1j, T1l, T1m; T1i = VFNMS(LDK(KP707106781), TZ, TW); T1j = VADD(T1c, T1d); T1k = VFNMS(LDK(KP923879532), T1j, T1i); T1o = VFMA(LDK(KP923879532), T1j, T1i); T1l = VFNMS(LDK(KP707106781), T1a, T19); T1m = VSUB(T13, T16); T1n = VFMA(LDK(KP923879532), T1m, T1l); T1p = VFNMS(LDK(KP923879532), T1m, T1l); } ST(&(x[WS(rs, 5)]), VFMAI(T1n, T1k), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 13)]), VFMAI(T1p, T1o), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 11)]), VFNMSI(T1n, T1k), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VFNMSI(T1p, T1o), ms, &(x[WS(rs, 1)])); } { V TQ, TU, TT, TV; { V TO, TP, TR, TS; TO = VADD(T4, T9); TP = VADD(TD, TI); TQ = VSUB(TO, TP); TU = VADD(TO, TP); TR = VADD(Tf, Tk); TS = VADD(Tq, Tv); TT = VSUB(TR, TS); TV = VADD(TR, TS); } ST(&(x[WS(rs, 12)]), VFNMSI(TT, TQ), ms, &(x[0])); ST(&(x[0]), VADD(TU, TV), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VFMAI(TT, TQ), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VSUB(TU, TV), ms, &(x[0])); } { V T18, T1g, T1f, T1h; { V T10, T17, T1b, T1e; T10 = VFMA(LDK(KP707106781), TZ, TW); T17 = VADD(T13, T16); T18 = VFNMS(LDK(KP923879532), T17, T10); T1g = VFMA(LDK(KP923879532), T17, T10); T1b = VFMA(LDK(KP707106781), T1a, T19); T1e = VSUB(T1c, T1d); T1f = VFNMS(LDK(KP923879532), T1e, T1b); T1h = VFMA(LDK(KP923879532), T1e, T1b); } ST(&(x[WS(rs, 7)]), VFNMSI(T1f, T18), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VFMAI(T1f, T18), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 15)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), VTW(0, 10), VTW(0, 11), VTW(0, 12), VTW(0, 13), VTW(0, 14), VTW(0, 15), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 16, XSIMD_STRING("t2bv_16"), twinstr, &GENUS, {53, 30, 34, 0}, 0, 0, 0 }; void XSIMD(codelet_t2bv_16) (planner *p) { X(kdft_dit_register) (p, t2bv_16, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2bv_16 -include dft/simd/t2b.h -sign 1 */ /* * This function contains 87 FP additions, 42 FP multiplications, * (or, 83 additions, 38 multiplications, 4 fused multiply/add), * 36 stack variables, 3 constants, and 32 memory accesses */ #include "dft/simd/t2b.h" static void t2bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP382683432, +0.382683432365089771728459984030398866761344562); DVK(KP923879532, +0.923879532511286756128183189396788286822416626); DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) { V TJ, T1b, TD, T1c, T17, T18, Ty, TK, T10, T11, T12, Tb, TM, T13, T14; V T15, Tm, TN, TG, TI, TH; TG = LD(&(x[0]), ms, &(x[0])); TH = LD(&(x[WS(rs, 8)]), ms, &(x[0])); TI = BYTW(&(W[TWVL * 14]), TH); TJ = VSUB(TG, TI); T1b = VADD(TG, TI); { V TA, TC, Tz, TB; Tz = LD(&(x[WS(rs, 4)]), ms, &(x[0])); TA = BYTW(&(W[TWVL * 6]), Tz); TB = LD(&(x[WS(rs, 12)]), ms, &(x[0])); TC = BYTW(&(W[TWVL * 22]), TB); TD = VSUB(TA, TC); T1c = VADD(TA, TC); } { V Tp, Tw, Tr, Tu, Ts, Tx; { V To, Tv, Tq, Tt; To = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Tp = BYTW(&(W[TWVL * 2]), To); Tv = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Tw = BYTW(&(W[TWVL * 10]), Tv); Tq = LD(&(x[WS(rs, 10)]), ms, &(x[0])); Tr = BYTW(&(W[TWVL * 18]), Tq); Tt = LD(&(x[WS(rs, 14)]), ms, &(x[0])); Tu = BYTW(&(W[TWVL * 26]), Tt); } T17 = VADD(Tp, Tr); T18 = VADD(Tu, Tw); Ts = VSUB(Tp, Tr); Tx = VSUB(Tu, Tw); Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx)); TK = VMUL(LDK(KP707106781), VADD(Ts, Tx)); } { V T2, T9, T4, T7, T5, Ta; { V T1, T8, T3, T6; T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T2 = BYTW(&(W[0]), T1); T8 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); T9 = BYTW(&(W[TWVL * 24]), T8); T3 = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); T4 = BYTW(&(W[TWVL * 16]), T3); T6 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T7 = BYTW(&(W[TWVL * 8]), T6); } T10 = VADD(T2, T4); T11 = VADD(T7, T9); T12 = VSUB(T10, T11); T5 = VSUB(T2, T4); Ta = VSUB(T7, T9); Tb = VFNMS(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), T5)); TM = VFMA(LDK(KP382683432), T5, VMUL(LDK(KP923879532), Ta)); } { V Td, Tk, Tf, Ti, Tg, Tl; { V Tc, Tj, Te, Th; Tc = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); Td = BYTW(&(W[TWVL * 28]), Tc); Tj = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); Tk = BYTW(&(W[TWVL * 20]), Tj); Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Tf = BYTW(&(W[TWVL * 12]), Te); Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Ti = BYTW(&(W[TWVL * 4]), Th); } T13 = VADD(Td, Tf); T14 = VADD(Ti, Tk); T15 = VSUB(T13, T14); Tg = VSUB(Td, Tf); Tl = VSUB(Ti, Tk); Tm = VFMA(LDK(KP923879532), Tg, VMUL(LDK(KP382683432), Tl)); TN = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl)); } { V T1a, T1g, T1f, T1h; { V T16, T19, T1d, T1e; T16 = VMUL(LDK(KP707106781), VSUB(T12, T15)); T19 = VSUB(T17, T18); T1a = VBYI(VSUB(T16, T19)); T1g = VBYI(VADD(T19, T16)); T1d = VSUB(T1b, T1c); T1e = VMUL(LDK(KP707106781), VADD(T12, T15)); T1f = VSUB(T1d, T1e); T1h = VADD(T1d, T1e); } ST(&(x[WS(rs, 6)]), VADD(T1a, T1f), ms, &(x[0])); ST(&(x[WS(rs, 14)]), VSUB(T1h, T1g), ms, &(x[0])); ST(&(x[WS(rs, 10)]), VSUB(T1f, T1a), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VADD(T1g, T1h), ms, &(x[0])); } { V T1k, T1o, T1n, T1p; { V T1i, T1j, T1l, T1m; T1i = VADD(T1b, T1c); T1j = VADD(T17, T18); T1k = VSUB(T1i, T1j); T1o = VADD(T1i, T1j); T1l = VADD(T10, T11); T1m = VADD(T13, T14); T1n = VBYI(VSUB(T1l, T1m)); T1p = VADD(T1l, T1m); } ST(&(x[WS(rs, 12)]), VSUB(T1k, T1n), ms, &(x[0])); ST(&(x[0]), VADD(T1o, T1p), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VADD(T1k, T1n), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VSUB(T1o, T1p), ms, &(x[0])); } { V TF, TQ, TP, TR; { V Tn, TE, TL, TO; Tn = VSUB(Tb, Tm); TE = VSUB(Ty, TD); TF = VBYI(VSUB(Tn, TE)); TQ = VBYI(VADD(TE, Tn)); TL = VSUB(TJ, TK); TO = VSUB(TM, TN); TP = VSUB(TL, TO); TR = VADD(TL, TO); } ST(&(x[WS(rs, 5)]), VADD(TF, TP), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 13)]), VSUB(TR, TQ), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 11)]), VSUB(TP, TF), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VADD(TQ, TR), ms, &(x[WS(rs, 1)])); } { V TU, TY, TX, TZ; { V TS, TT, TV, TW; TS = VADD(TJ, TK); TT = VADD(Tb, Tm); TU = VADD(TS, TT); TY = VSUB(TS, TT); TV = VADD(TD, Ty); TW = VADD(TM, TN); TX = VBYI(VADD(TV, TW)); TZ = VBYI(VSUB(TW, TV)); } ST(&(x[WS(rs, 15)]), VSUB(TU, TX), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VADD(TY, TZ), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VADD(TU, TX), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VSUB(TY, TZ), ms, &(x[WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), VTW(0, 10), VTW(0, 11), VTW(0, 12), VTW(0, 13), VTW(0, 14), VTW(0, 15), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 16, XSIMD_STRING("t2bv_16"), twinstr, &GENUS, {83, 38, 4, 0}, 0, 0, 0 }; void XSIMD(codelet_t2bv_16) (planner *p) { X(kdft_dit_register) (p, t2bv_16, &desc); } #endif