/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:05:46 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t2fv_20 -include dft/simd/t2f.h */ /* * This function contains 123 FP additions, 88 FP multiplications, * (or, 77 additions, 42 multiplications, 46 fused multiply/add), * 54 stack variables, 4 constants, and 40 memory accesses */ #include "dft/simd/t2f.h" static void t2fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) { V T4, Tx, T1m, T1K, TZ, T16, T17, T10, Tf, Tq, Tr, T1O, T1P, T1Q, T1w; V T1z, T1A, TI, TT, TU, T1L, T1M, T1N, T1p, T1s, T1t, Ts, TV; { V T1, Tw, T3, Tu, Tv, T2, Tt, T1k, T1l; T1 = LD(&(x[0]), ms, &(x[0])); Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); Tw = BYTWJ(&(W[TWVL * 28]), Tv); T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); T3 = BYTWJ(&(W[TWVL * 18]), T2); Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tu = BYTWJ(&(W[TWVL * 8]), Tt); T4 = VSUB(T1, T3); Tx = VSUB(Tu, Tw); T1k = VADD(T1, T3); T1l = VADD(Tu, Tw); T1m = VSUB(T1k, T1l); T1K = VADD(T1k, T1l); } { V T9, T1n, TN, T1v, TS, T1y, Te, T1q, Tk, T1u, TC, T1o, TH, T1r, Tp; V T1x; { V T6, T8, T5, T7; T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T6 = BYTWJ(&(W[TWVL * 6]), T5); T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0])); T8 = BYTWJ(&(W[TWVL * 26]), T7); T9 = VSUB(T6, T8); T1n = VADD(T6, T8); } { V TK, TM, TJ, TL; TJ = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); TK = BYTWJ(&(W[TWVL * 24]), TJ); TL = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); TM = BYTWJ(&(W[TWVL * 4]), TL); TN = VSUB(TK, TM); T1v = VADD(TK, TM); } { V TP, TR, TO, TQ; TO = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); TP = BYTWJ(&(W[TWVL * 32]), TO); TQ = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); TR = BYTWJ(&(W[TWVL * 12]), TQ); TS = VSUB(TP, TR); T1y = VADD(TP, TR); } { V Tb, Td, Ta, Tc; Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0])); Tb = BYTWJ(&(W[TWVL * 30]), Ta); Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Td = BYTWJ(&(W[TWVL * 10]), Tc); Te = VSUB(Tb, Td); T1q = VADD(Tb, Td); } { V Th, Tj, Tg, Ti; Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Th = BYTWJ(&(W[TWVL * 14]), Tg); Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0])); Tj = BYTWJ(&(W[TWVL * 34]), Ti); Tk = VSUB(Th, Tj); T1u = VADD(Th, Tj); } { V Tz, TB, Ty, TA; Ty = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tz = BYTWJ(&(W[TWVL * 16]), Ty); TA = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); TB = BYTWJ(&(W[TWVL * 36]), TA); TC = VSUB(Tz, TB); T1o = VADD(Tz, TB); } { V TE, TG, TD, TF; TD = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); TE = BYTWJ(&(W[0]), TD); TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); TG = BYTWJ(&(W[TWVL * 20]), TF); TH = VSUB(TE, TG); T1r = VADD(TE, TG); } { V Tm, To, Tl, Tn; Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0])); Tm = BYTWJ(&(W[TWVL * 22]), Tl); Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); To = BYTWJ(&(W[TWVL * 2]), Tn); Tp = VSUB(Tm, To); T1x = VADD(Tm, To); } TZ = VSUB(TH, TC); T16 = VSUB(T9, Te); T17 = VSUB(Tk, Tp); T10 = VSUB(TS, TN); Tf = VADD(T9, Te); Tq = VADD(Tk, Tp); Tr = VADD(Tf, Tq); T1O = VADD(T1u, T1v); T1P = VADD(T1x, T1y); T1Q = VADD(T1O, T1P); T1w = VSUB(T1u, T1v); T1z = VSUB(T1x, T1y); T1A = VADD(T1w, T1z); TI = VADD(TC, TH); TT = VADD(TN, TS); TU = VADD(TI, TT); T1L = VADD(T1n, T1o); T1M = VADD(T1q, T1r); T1N = VADD(T1L, T1M); T1p = VSUB(T1n, T1o); T1s = VSUB(T1q, T1r); T1t = VADD(T1p, T1s); } Ts = VADD(T4, Tr); TV = VADD(Tx, TU); ST(&(x[WS(rs, 5)]), VFNMSI(TV, Ts), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 15)]), VFMAI(TV, Ts), ms, &(x[WS(rs, 1)])); { V T1T, T1R, T1S, T1X, T1Z, T1V, T1W, T1Y, T1U; T1T = VSUB(T1N, T1Q); T1R = VADD(T1N, T1Q); T1S = VFNMS(LDK(KP250000000), T1R, T1K); T1V = VSUB(T1L, T1M); T1W = VSUB(T1O, T1P); T1X = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1W, T1V)); T1Z = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1V, T1W)); ST(&(x[0]), VADD(T1K, T1R), ms, &(x[0])); T1Y = VFNMS(LDK(KP559016994), T1T, T1S); ST(&(x[WS(rs, 8)]), VFNMSI(T1Z, T1Y), ms, &(x[0])); ST(&(x[WS(rs, 12)]), VFMAI(T1Z, T1Y), ms, &(x[0])); T1U = VFMA(LDK(KP559016994), T1T, T1S); ST(&(x[WS(rs, 4)]), VFMAI(T1X, T1U), ms, &(x[0])); ST(&(x[WS(rs, 16)]), VFNMSI(T1X, T1U), ms, &(x[0])); } { V T1D, T1B, T1C, T1H, T1J, T1F, T1G, T1I, T1E; T1D = VSUB(T1t, T1A); T1B = VADD(T1t, T1A); T1C = VFNMS(LDK(KP250000000), T1B, T1m); T1F = VSUB(T1w, T1z); T1G = VSUB(T1p, T1s); T1H = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1G, T1F)); T1J = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1F, T1G)); ST(&(x[WS(rs, 10)]), VADD(T1m, T1B), ms, &(x[0])); T1I = VFMA(LDK(KP559016994), T1D, T1C); ST(&(x[WS(rs, 6)]), VFNMSI(T1J, T1I), ms, &(x[0])); ST(&(x[WS(rs, 14)]), VFMAI(T1J, T1I), ms, &(x[0])); T1E = VFNMS(LDK(KP559016994), T1D, T1C); ST(&(x[WS(rs, 2)]), VFMAI(T1H, T1E), ms, &(x[0])); ST(&(x[WS(rs, 18)]), VFNMSI(T1H, T1E), ms, &(x[0])); } { V T11, T18, T1g, T1d, T15, T1f, TY, T1c; T11 = VFMA(LDK(KP618033988), T10, TZ); T18 = VFMA(LDK(KP618033988), T17, T16); T1g = VFNMS(LDK(KP618033988), T16, T17); T1d = VFNMS(LDK(KP618033988), TZ, T10); { V T13, T14, TW, TX; T13 = VFNMS(LDK(KP250000000), TU, Tx); T14 = VSUB(TT, TI); T15 = VFNMS(LDK(KP559016994), T14, T13); T1f = VFMA(LDK(KP559016994), T14, T13); TW = VFNMS(LDK(KP250000000), Tr, T4); TX = VSUB(Tf, Tq); TY = VFMA(LDK(KP559016994), TX, TW); T1c = VFNMS(LDK(KP559016994), TX, TW); } { V T12, T19, T1i, T1j; T12 = VFMA(LDK(KP951056516), T11, TY); T19 = VFMA(LDK(KP951056516), T18, T15); ST(&(x[WS(rs, 1)]), VFNMSI(T19, T12), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 19)]), VFMAI(T19, T12), ms, &(x[WS(rs, 1)])); T1i = VFMA(LDK(KP951056516), T1d, T1c); T1j = VFMA(LDK(KP951056516), T1g, T1f); ST(&(x[WS(rs, 13)]), VFNMSI(T1j, T1i), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VFMAI(T1j, T1i), ms, &(x[WS(rs, 1)])); } { V T1a, T1b, T1e, T1h; T1a = VFNMS(LDK(KP951056516), T11, TY); T1b = VFNMS(LDK(KP951056516), T18, T15); ST(&(x[WS(rs, 9)]), VFNMSI(T1b, T1a), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 11)]), VFMAI(T1b, T1a), ms, &(x[WS(rs, 1)])); T1e = VFNMS(LDK(KP951056516), T1d, T1c); T1h = VFNMS(LDK(KP951056516), T1g, T1f); ST(&(x[WS(rs, 17)]), VFNMSI(T1h, T1e), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VFMAI(T1h, T1e), ms, &(x[WS(rs, 1)])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), VTW(0, 10), VTW(0, 11), VTW(0, 12), VTW(0, 13), VTW(0, 14), VTW(0, 15), VTW(0, 16), VTW(0, 17), VTW(0, 18), VTW(0, 19), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 20, XSIMD_STRING("t2fv_20"), twinstr, &GENUS, {77, 42, 46, 0}, 0, 0, 0 }; void XSIMD(codelet_t2fv_20) (planner *p) { X(kdft_dit_register) (p, t2fv_20, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t2fv_20 -include dft/simd/t2f.h */ /* * This function contains 123 FP additions, 62 FP multiplications, * (or, 111 additions, 50 multiplications, 12 fused multiply/add), * 54 stack variables, 4 constants, and 40 memory accesses */ #include "dft/simd/t2f.h" static void t2fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) { V T4, Tx, T1B, T1U, TZ, T16, T17, T10, Tf, Tq, Tr, T1N, T1O, T1S, T1t; V T1w, T1C, TI, TT, TU, T1K, T1L, T1R, T1m, T1p, T1D, Ts, TV; { V T1, Tw, T3, Tu, Tv, T2, Tt, T1z, T1A; T1 = LD(&(x[0]), ms, &(x[0])); Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); Tw = BYTWJ(&(W[TWVL * 28]), Tv); T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); T3 = BYTWJ(&(W[TWVL * 18]), T2); Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tu = BYTWJ(&(W[TWVL * 8]), Tt); T4 = VSUB(T1, T3); Tx = VSUB(Tu, Tw); T1z = VADD(T1, T3); T1A = VADD(Tu, Tw); T1B = VSUB(T1z, T1A); T1U = VADD(T1z, T1A); } { V T9, T1r, TN, T1l, TS, T1o, Te, T1u, Tk, T1k, TC, T1s, TH, T1v, Tp; V T1n; { V T6, T8, T5, T7; T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T6 = BYTWJ(&(W[TWVL * 6]), T5); T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0])); T8 = BYTWJ(&(W[TWVL * 26]), T7); T9 = VSUB(T6, T8); T1r = VADD(T6, T8); } { V TK, TM, TJ, TL; TJ = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); TK = BYTWJ(&(W[TWVL * 24]), TJ); TL = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); TM = BYTWJ(&(W[TWVL * 4]), TL); TN = VSUB(TK, TM); T1l = VADD(TK, TM); } { V TP, TR, TO, TQ; TO = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); TP = BYTWJ(&(W[TWVL * 32]), TO); TQ = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); TR = BYTWJ(&(W[TWVL * 12]), TQ); TS = VSUB(TP, TR); T1o = VADD(TP, TR); } { V Tb, Td, Ta, Tc; Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0])); Tb = BYTWJ(&(W[TWVL * 30]), Ta); Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Td = BYTWJ(&(W[TWVL * 10]), Tc); Te = VSUB(Tb, Td); T1u = VADD(Tb, Td); } { V Th, Tj, Tg, Ti; Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Th = BYTWJ(&(W[TWVL * 14]), Tg); Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0])); Tj = BYTWJ(&(W[TWVL * 34]), Ti); Tk = VSUB(Th, Tj); T1k = VADD(Th, Tj); } { V Tz, TB, Ty, TA; Ty = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tz = BYTWJ(&(W[TWVL * 16]), Ty); TA = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); TB = BYTWJ(&(W[TWVL * 36]), TA); TC = VSUB(Tz, TB); T1s = VADD(Tz, TB); } { V TE, TG, TD, TF; TD = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); TE = BYTWJ(&(W[0]), TD); TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); TG = BYTWJ(&(W[TWVL * 20]), TF); TH = VSUB(TE, TG); T1v = VADD(TE, TG); } { V Tm, To, Tl, Tn; Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0])); Tm = BYTWJ(&(W[TWVL * 22]), Tl); Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); To = BYTWJ(&(W[TWVL * 2]), Tn); Tp = VSUB(Tm, To); T1n = VADD(Tm, To); } TZ = VSUB(TH, TC); T16 = VSUB(T9, Te); T17 = VSUB(Tk, Tp); T10 = VSUB(TS, TN); Tf = VADD(T9, Te); Tq = VADD(Tk, Tp); Tr = VADD(Tf, Tq); T1N = VADD(T1k, T1l); T1O = VADD(T1n, T1o); T1S = VADD(T1N, T1O); T1t = VSUB(T1r, T1s); T1w = VSUB(T1u, T1v); T1C = VADD(T1t, T1w); TI = VADD(TC, TH); TT = VADD(TN, TS); TU = VADD(TI, TT); T1K = VADD(T1r, T1s); T1L = VADD(T1u, T1v); T1R = VADD(T1K, T1L); T1m = VSUB(T1k, T1l); T1p = VSUB(T1n, T1o); T1D = VADD(T1m, T1p); } Ts = VADD(T4, Tr); TV = VBYI(VADD(Tx, TU)); ST(&(x[WS(rs, 5)]), VSUB(Ts, TV), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 15)]), VADD(Ts, TV), ms, &(x[WS(rs, 1)])); { V T1T, T1V, T1W, T1Q, T1Z, T1M, T1P, T1Y, T1X; T1T = VMUL(LDK(KP559016994), VSUB(T1R, T1S)); T1V = VADD(T1R, T1S); T1W = VFNMS(LDK(KP250000000), T1V, T1U); T1M = VSUB(T1K, T1L); T1P = VSUB(T1N, T1O); T1Q = VBYI(VFMA(LDK(KP951056516), T1M, VMUL(LDK(KP587785252), T1P))); T1Z = VBYI(VFNMS(LDK(KP587785252), T1M, VMUL(LDK(KP951056516), T1P))); ST(&(x[0]), VADD(T1U, T1V), ms, &(x[0])); T1Y = VSUB(T1W, T1T); ST(&(x[WS(rs, 8)]), VSUB(T1Y, T1Z), ms, &(x[0])); ST(&(x[WS(rs, 12)]), VADD(T1Z, T1Y), ms, &(x[0])); T1X = VADD(T1T, T1W); ST(&(x[WS(rs, 4)]), VADD(T1Q, T1X), ms, &(x[0])); ST(&(x[WS(rs, 16)]), VSUB(T1X, T1Q), ms, &(x[0])); } { V T1G, T1E, T1F, T1y, T1J, T1q, T1x, T1I, T1H; T1G = VMUL(LDK(KP559016994), VSUB(T1C, T1D)); T1E = VADD(T1C, T1D); T1F = VFNMS(LDK(KP250000000), T1E, T1B); T1q = VSUB(T1m, T1p); T1x = VSUB(T1t, T1w); T1y = VBYI(VFNMS(LDK(KP587785252), T1x, VMUL(LDK(KP951056516), T1q))); T1J = VBYI(VFMA(LDK(KP951056516), T1x, VMUL(LDK(KP587785252), T1q))); ST(&(x[WS(rs, 10)]), VADD(T1B, T1E), ms, &(x[0])); T1I = VADD(T1G, T1F); ST(&(x[WS(rs, 6)]), VSUB(T1I, T1J), ms, &(x[0])); ST(&(x[WS(rs, 14)]), VADD(T1J, T1I), ms, &(x[0])); T1H = VSUB(T1F, T1G); ST(&(x[WS(rs, 2)]), VADD(T1y, T1H), ms, &(x[0])); ST(&(x[WS(rs, 18)]), VSUB(T1H, T1y), ms, &(x[0])); } { V T11, T18, T1g, T1d, T15, T1f, TY, T1c; T11 = VFMA(LDK(KP951056516), TZ, VMUL(LDK(KP587785252), T10)); T18 = VFMA(LDK(KP951056516), T16, VMUL(LDK(KP587785252), T17)); T1g = VFNMS(LDK(KP587785252), T16, VMUL(LDK(KP951056516), T17)); T1d = VFNMS(LDK(KP587785252), TZ, VMUL(LDK(KP951056516), T10)); { V T13, T14, TW, TX; T13 = VFMS(LDK(KP250000000), TU, Tx); T14 = VMUL(LDK(KP559016994), VSUB(TT, TI)); T15 = VADD(T13, T14); T1f = VSUB(T14, T13); TW = VMUL(LDK(KP559016994), VSUB(Tf, Tq)); TX = VFNMS(LDK(KP250000000), Tr, T4); TY = VADD(TW, TX); T1c = VSUB(TX, TW); } { V T12, T19, T1i, T1j; T12 = VADD(TY, T11); T19 = VBYI(VSUB(T15, T18)); ST(&(x[WS(rs, 19)]), VSUB(T12, T19), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VADD(T12, T19), ms, &(x[WS(rs, 1)])); T1i = VADD(T1c, T1d); T1j = VBYI(VADD(T1g, T1f)); ST(&(x[WS(rs, 13)]), VSUB(T1i, T1j), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VADD(T1i, T1j), ms, &(x[WS(rs, 1)])); } { V T1a, T1b, T1e, T1h; T1a = VSUB(TY, T11); T1b = VBYI(VADD(T18, T15)); ST(&(x[WS(rs, 11)]), VSUB(T1a, T1b), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VADD(T1a, T1b), ms, &(x[WS(rs, 1)])); T1e = VSUB(T1c, T1d); T1h = VBYI(VSUB(T1f, T1g)); ST(&(x[WS(rs, 17)]), VSUB(T1e, T1h), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VADD(T1e, T1h), ms, &(x[WS(rs, 1)])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), VTW(0, 10), VTW(0, 11), VTW(0, 12), VTW(0, 13), VTW(0, 14), VTW(0, 15), VTW(0, 16), VTW(0, 17), VTW(0, 18), VTW(0, 19), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 20, XSIMD_STRING("t2fv_20"), twinstr, &GENUS, {111, 50, 12, 0}, 0, 0, 0 }; void XSIMD(codelet_t2fv_20) (planner *p) { X(kdft_dit_register) (p, t2fv_20, &desc); } #endif