/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:11 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include dft/simd/ts.h */ /* * This function contains 74 FP additions, 50 FP multiplications, * (or, 44 additions, 20 multiplications, 30 fused multiply/add), * 48 stack variables, 1 constants, and 32 memory accesses */ #include "dft/simd/ts.h" static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) { V T2, T3, Tl, Tn, T5, T6, Tf, T7, Ts, Tb, To, Ti, TC, TG; { V T4, Tm, Tr, Ta, TB, TF; T2 = LDW(&(W[0])); T3 = LDW(&(W[TWVL * 2])); T4 = VMUL(T2, T3); Tl = LDW(&(W[TWVL * 4])); Tm = VMUL(T2, Tl); Tn = LDW(&(W[TWVL * 5])); Tr = VMUL(T2, Tn); T5 = LDW(&(W[TWVL * 1])); T6 = LDW(&(W[TWVL * 3])); Ta = VMUL(T2, T6); Tf = VFMA(T5, T6, T4); T7 = VFNMS(T5, T6, T4); Ts = VFNMS(T5, Tl, Tr); Tb = VFMA(T5, T3, Ta); To = VFMA(T5, Tn, Tm); TB = VMUL(Tf, Tl); TF = VMUL(Tf, Tn); Ti = VFNMS(T5, T3, Ta); TC = VFMA(Ti, Tn, TB); TG = VFNMS(Ti, Tl, TF); } { V T1, T1s, Td, T1r, Tu, TY, Tk, TW, TN, TR, T18, T1a, T1c, T1d, TA; V TI, T11, T13, T15, T16; T1 = LD(&(ri[0]), ms, &(ri[0])); T1s = LD(&(ii[0]), ms, &(ii[0])); { V T8, T9, Tc, T1q; T8 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); T9 = VMUL(T7, T8); Tc = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); T1q = VMUL(T7, Tc); Td = VFMA(Tb, Tc, T9); T1r = VFNMS(Tb, T8, T1q); } { V Tp, Tq, Tt, TX; Tp = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); Tq = VMUL(To, Tp); Tt = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); TX = VMUL(To, Tt); Tu = VFMA(Ts, Tt, Tq); TY = VFNMS(Ts, Tp, TX); } { V Tg, Th, Tj, TV; Tg = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); Th = VMUL(Tf, Tg); Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); TV = VMUL(Tf, Tj); Tk = VFMA(Ti, Tj, Th); TW = VFNMS(Ti, Tg, TV); } { V TK, TL, TM, T19, TO, TP, TQ, T1b; TK = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); TL = VMUL(Tl, TK); TM = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); T19 = VMUL(Tl, TM); TO = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); TP = VMUL(T3, TO); TQ = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); T1b = VMUL(T3, TQ); TN = VFMA(Tn, TM, TL); TR = VFMA(T6, TQ, TP); T18 = VSUB(TN, TR); T1a = VFNMS(Tn, TK, T19); T1c = VFNMS(T6, TO, T1b); T1d = VSUB(T1a, T1c); } { V Tx, Ty, Tz, T12, TD, TE, TH, T14; Tx = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); Ty = VMUL(T2, Tx); Tz = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); T12 = VMUL(T2, Tz); TD = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); TE = VMUL(TC, TD); TH = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); T14 = VMUL(TC, TH); TA = VFMA(T5, Tz, Ty); TI = VFMA(TG, TH, TE); T11 = VSUB(TA, TI); T13 = VFNMS(T5, Tx, T12); T15 = VFNMS(TG, TD, T14); T16 = VSUB(T13, T15); } { V T10, T1g, T1z, T1B, T1f, T1C, T1j, T1A; { V TU, TZ, T1x, T1y; TU = VSUB(T1, Td); TZ = VSUB(TW, TY); T10 = VADD(TU, TZ); T1g = VSUB(TU, TZ); T1x = VSUB(T1s, T1r); T1y = VSUB(Tk, Tu); T1z = VSUB(T1x, T1y); T1B = VADD(T1y, T1x); } { V T17, T1e, T1h, T1i; T17 = VADD(T11, T16); T1e = VSUB(T18, T1d); T1f = VADD(T17, T1e); T1C = VSUB(T1e, T17); T1h = VSUB(T16, T11); T1i = VADD(T18, T1d); T1j = VSUB(T1h, T1i); T1A = VADD(T1h, T1i); } ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)])); ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)])); ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)])); ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)])); ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)])); ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)])); ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)])); ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)])); } { V Tw, T1k, T1u, T1w, TT, T1v, T1n, T1o; { V Te, Tv, T1p, T1t; Te = VADD(T1, Td); Tv = VADD(Tk, Tu); Tw = VADD(Te, Tv); T1k = VSUB(Te, Tv); T1p = VADD(TW, TY); T1t = VADD(T1r, T1s); T1u = VADD(T1p, T1t); T1w = VSUB(T1t, T1p); } { V TJ, TS, T1l, T1m; TJ = VADD(TA, TI); TS = VADD(TN, TR); TT = VADD(TJ, TS); T1v = VSUB(TS, TJ); T1l = VADD(T13, T15); T1m = VADD(T1a, T1c); T1n = VSUB(T1l, T1m); T1o = VADD(T1l, T1m); } ST(&(ri[WS(rs, 4)]), VSUB(Tw, TT), ms, &(ri[0])); ST(&(ii[WS(rs, 4)]), VSUB(T1u, T1o), ms, &(ii[0])); ST(&(ri[0]), VADD(Tw, TT), ms, &(ri[0])); ST(&(ii[0]), VADD(T1o, T1u), ms, &(ii[0])); ST(&(ri[WS(rs, 6)]), VSUB(T1k, T1n), ms, &(ri[0])); ST(&(ii[WS(rs, 6)]), VSUB(T1w, T1v), ms, &(ii[0])); ST(&(ri[WS(rs, 2)]), VADD(T1k, T1n), ms, &(ri[0])); ST(&(ii[WS(rs, 2)]), VADD(T1v, T1w), ms, &(ii[0])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), VTW(0, 7), {TW_NEXT, (2 * VL), 0} }; static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {44, 20, 30, 0}, 0, 0, 0 }; void XSIMD(codelet_t2sv_8) (planner *p) { X(kdft_dit_register) (p, t2sv_8, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include dft/simd/ts.h */ /* * This function contains 74 FP additions, 44 FP multiplications, * (or, 56 additions, 26 multiplications, 18 fused multiply/add), * 42 stack variables, 1 constants, and 32 memory accesses */ #include "dft/simd/ts.h" static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) { V T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx; { V T4, Tb, T7, Ta; T2 = LDW(&(W[0])); T5 = LDW(&(W[TWVL * 1])); T3 = LDW(&(W[TWVL * 2])); T6 = LDW(&(W[TWVL * 3])); T4 = VMUL(T2, T3); Tb = VMUL(T5, T3); T7 = VMUL(T5, T6); Ta = VMUL(T2, T6); T8 = VSUB(T4, T7); Tc = VADD(Ta, Tb); Tg = VADD(T4, T7); Ti = VSUB(Ta, Tb); Tl = LDW(&(W[TWVL * 4])); Tm = LDW(&(W[TWVL * 5])); Tn = VFMA(T2, Tl, VMUL(T5, Tm)); Tz = VFNMS(Ti, Tl, VMUL(Tg, Tm)); Tp = VFNMS(T5, Tl, VMUL(T2, Tm)); Tx = VFMA(Tg, Tl, VMUL(Ti, Tm)); } { V Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ; V TT; { V T1, T1c, Te, T1b, T9, Td; T1 = LD(&(ri[0]), ms, &(ri[0])); T1c = LD(&(ii[0]), ms, &(ii[0])); T9 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); Td = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); Te = VFMA(T8, T9, VMUL(Tc, Td)); T1b = VFNMS(Tc, T9, VMUL(T8, Td)); Tf = VADD(T1, Te); T1i = VSUB(T1c, T1b); TL = VSUB(T1, Te); T1d = VADD(T1b, T1c); } { V TF, TW, TI, TX; { V TD, TE, TG, TH; TD = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); TF = VFMA(Tl, TD, VMUL(Tm, TE)); TW = VFNMS(Tm, TD, VMUL(Tl, TE)); TG = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); TH = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); TI = VFMA(T3, TG, VMUL(T6, TH)); TX = VFNMS(T6, TG, VMUL(T3, TH)); } TJ = VADD(TF, TI); T17 = VADD(TW, TX); TV = VSUB(TF, TI); TY = VSUB(TW, TX); } { V Tk, TM, Tr, TN; { V Th, Tj, To, Tq; Th = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); Tk = VFMA(Tg, Th, VMUL(Ti, Tj)); TM = VFNMS(Ti, Th, VMUL(Tg, Tj)); To = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); Tq = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); Tr = VFMA(Tn, To, VMUL(Tp, Tq)); TN = VFNMS(Tp, To, VMUL(Tn, Tq)); } Ts = VADD(Tk, Tr); T1j = VSUB(Tk, Tr); TO = VSUB(TM, TN); T1a = VADD(TM, TN); } { V Tw, TR, TB, TS; { V Tu, Tv, Ty, TA; Tu = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); Tv = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); Tw = VFMA(T2, Tu, VMUL(T5, Tv)); TR = VFNMS(T5, Tu, VMUL(T2, Tv)); Ty = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); TA = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); TB = VFMA(Tx, Ty, VMUL(Tz, TA)); TS = VFNMS(Tz, Ty, VMUL(Tx, TA)); } TC = VADD(Tw, TB); T16 = VADD(TR, TS); TQ = VSUB(Tw, TB); TT = VSUB(TR, TS); } { V Tt, TK, T1f, T1g; Tt = VADD(Tf, Ts); TK = VADD(TC, TJ); ST(&(ri[WS(rs, 4)]), VSUB(Tt, TK), ms, &(ri[0])); ST(&(ri[0]), VADD(Tt, TK), ms, &(ri[0])); { V T19, T1e, T15, T18; T19 = VADD(T16, T17); T1e = VADD(T1a, T1d); ST(&(ii[0]), VADD(T19, T1e), ms, &(ii[0])); ST(&(ii[WS(rs, 4)]), VSUB(T1e, T19), ms, &(ii[0])); T15 = VSUB(Tf, Ts); T18 = VSUB(T16, T17); ST(&(ri[WS(rs, 6)]), VSUB(T15, T18), ms, &(ri[0])); ST(&(ri[WS(rs, 2)]), VADD(T15, T18), ms, &(ri[0])); } T1f = VSUB(TJ, TC); T1g = VSUB(T1d, T1a); ST(&(ii[WS(rs, 2)]), VADD(T1f, T1g), ms, &(ii[0])); ST(&(ii[WS(rs, 6)]), VSUB(T1g, T1f), ms, &(ii[0])); { V T11, T1k, T14, T1h, T12, T13; T11 = VSUB(TL, TO); T1k = VSUB(T1i, T1j); T12 = VSUB(TT, TQ); T13 = VADD(TV, TY); T14 = VMUL(LDK(KP707106781), VSUB(T12, T13)); T1h = VMUL(LDK(KP707106781), VADD(T12, T13)); ST(&(ri[WS(rs, 7)]), VSUB(T11, T14), ms, &(ri[WS(rs, 1)])); ST(&(ii[WS(rs, 5)]), VSUB(T1k, T1h), ms, &(ii[WS(rs, 1)])); ST(&(ri[WS(rs, 3)]), VADD(T11, T14), ms, &(ri[WS(rs, 1)])); ST(&(ii[WS(rs, 1)]), VADD(T1h, T1k), ms, &(ii[WS(rs, 1)])); } { V TP, T1m, T10, T1l, TU, TZ; TP = VADD(TL, TO); T1m = VADD(T1j, T1i); TU = VADD(TQ, TT); TZ = VSUB(TV, TY); T10 = VMUL(LDK(KP707106781), VADD(TU, TZ)); T1l = VMUL(LDK(KP707106781), VSUB(TZ, TU)); ST(&(ri[WS(rs, 5)]), VSUB(TP, T10), ms, &(ri[WS(rs, 1)])); ST(&(ii[WS(rs, 7)]), VSUB(T1m, T1l), ms, &(ii[WS(rs, 1)])); ST(&(ri[WS(rs, 1)]), VADD(TP, T10), ms, &(ri[WS(rs, 1)])); ST(&(ii[WS(rs, 3)]), VADD(T1l, T1m), ms, &(ii[WS(rs, 1)])); } } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), VTW(0, 7), {TW_NEXT, (2 * VL), 0} }; static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {56, 26, 18, 0}, 0, 0, 0 }; void XSIMD(codelet_t2sv_8) (planner *p) { X(kdft_dit_register) (p, t2sv_8, &desc); } #endif