/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:06 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include dft/simd/t3b.h -sign 1 */ /* * This function contains 98 FP additions, 86 FP multiplications, * (or, 64 additions, 52 multiplications, 34 fused multiply/add), * 51 stack variables, 3 constants, and 32 memory accesses */ #include "dft/simd/t3b.h" static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP923879532, +0.923879532511286756128183189396788286822416626); DVK(KP707106781, +0.707106781186547524400844362104849039284835938); DVK(KP414213562, +0.414213562373095048801688724209698078569671875); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { V T2, T8, T9, Tx, Tu, TR, T3, T4, TN, TU, Tc, Tm, Ty, TE, Tp; T2 = LDW(&(W[0])); T8 = LDW(&(W[TWVL * 2])); T9 = VZMUL(T2, T8); Tx = VZMULJ(T2, T8); Tu = LDW(&(W[TWVL * 6])); TR = VZMULJ(T2, Tu); T3 = LDW(&(W[TWVL * 4])); T4 = VZMULJ(T2, T3); TN = VZMUL(T2, T3); TU = VZMULJ(T8, T3); Tc = VZMUL(T8, T3); Tm = VZMULJ(T9, T3); Ty = VZMULJ(Tx, T3); TE = VZMUL(Tx, T3); Tp = VZMUL(T9, T3); { V T7, T1b, Tf, T1o, TQ, TX, T1e, T1p, Tl, Ts, Tt, T1i, T1r, TB, TH; V TI, T1l, T1s, T1, T6, T5; T1 = LD(&(x[0]), ms, &(x[0])); T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); T6 = VZMUL(T4, T5); T7 = VADD(T1, T6); T1b = VSUB(T1, T6); { V Tb, Te, Ta, Td; Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tb = VZMUL(T9, Ta); Td = LD(&(x[WS(rs, 12)]), ms, &(x[0])); Te = VZMUL(Tc, Td); Tf = VADD(Tb, Te); T1o = VSUB(Tb, Te); } { V TM, TW, TP, TT, T1c, T1d; { V TL, TV, TO, TS; TL = LD(&(x[WS(rs, 2)]), ms, &(x[0])); TM = VZMUL(Tx, TL); TV = LD(&(x[WS(rs, 6)]), ms, &(x[0])); TW = VZMUL(TU, TV); TO = LD(&(x[WS(rs, 10)]), ms, &(x[0])); TP = VZMUL(TN, TO); TS = LD(&(x[WS(rs, 14)]), ms, &(x[0])); TT = VZMUL(TR, TS); } TQ = VADD(TM, TP); TX = VADD(TT, TW); T1c = VSUB(TM, TP); T1d = VSUB(TT, TW); T1e = VADD(T1c, T1d); T1p = VSUB(T1c, T1d); } { V Ti, Tr, Tk, To, T1g, T1h; { V Th, Tq, Tj, Tn; Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Ti = VZMUL(T2, Th); Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); Tr = VZMUL(Tp, Tq); Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tk = VZMUL(T3, Tj); Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); To = VZMUL(Tm, Tn); } Tl = VADD(Ti, Tk); Ts = VADD(To, Tr); Tt = VSUB(Tl, Ts); T1g = VSUB(Ti, Tk); T1h = VSUB(To, Tr); T1i = VFNMS(LDK(KP414213562), T1h, T1g); T1r = VFMA(LDK(KP414213562), T1g, T1h); } { V Tw, TG, TA, TD, T1j, T1k; { V Tv, TF, Tz, TC; Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); Tw = VZMUL(Tu, Tv); TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); TG = VZMUL(TE, TF); Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); TA = VZMUL(Ty, Tz); TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); TD = VZMUL(T8, TC); } TB = VADD(Tw, TA); TH = VADD(TD, TG); TI = VSUB(TB, TH); T1j = VSUB(Tw, TA); T1k = VSUB(TG, TD); T1l = VFNMS(LDK(KP414213562), T1k, T1j); T1s = VFMA(LDK(KP414213562), T1j, T1k); } { V TK, T11, T10, T12; { V Tg, TJ, TY, TZ; Tg = VSUB(T7, Tf); TJ = VADD(Tt, TI); TK = VFNMS(LDK(KP707106781), TJ, Tg); T11 = VFMA(LDK(KP707106781), TJ, Tg); TY = VSUB(TQ, TX); TZ = VSUB(Tt, TI); T10 = VFNMS(LDK(KP707106781), TZ, TY); T12 = VFMA(LDK(KP707106781), TZ, TY); } ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0])); ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0])); ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0])); } { V T1z, T1D, T1C, T1E; { V T1x, T1y, T1A, T1B; T1x = VFNMS(LDK(KP707106781), T1e, T1b); T1y = VADD(T1r, T1s); T1z = VFNMS(LDK(KP923879532), T1y, T1x); T1D = VFMA(LDK(KP923879532), T1y, T1x); T1A = VFNMS(LDK(KP707106781), T1p, T1o); T1B = VSUB(T1i, T1l); T1C = VFMA(LDK(KP923879532), T1B, T1A); T1E = VFNMS(LDK(KP923879532), T1B, T1A); } ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 13)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 11)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)])); } { V T15, T19, T18, T1a; { V T13, T14, T16, T17; T13 = VADD(T7, Tf); T14 = VADD(TQ, TX); T15 = VSUB(T13, T14); T19 = VADD(T13, T14); T16 = VADD(Tl, Ts); T17 = VADD(TB, TH); T18 = VSUB(T16, T17); T1a = VADD(T16, T17); } ST(&(x[WS(rs, 12)]), VFNMSI(T18, T15), ms, &(x[0])); ST(&(x[0]), VADD(T19, T1a), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VFMAI(T18, T15), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VSUB(T19, T1a), ms, &(x[0])); } { V T1n, T1v, T1u, T1w; { V T1f, T1m, T1q, T1t; T1f = VFMA(LDK(KP707106781), T1e, T1b); T1m = VADD(T1i, T1l); T1n = VFNMS(LDK(KP923879532), T1m, T1f); T1v = VFMA(LDK(KP923879532), T1m, T1f); T1q = VFMA(LDK(KP707106781), T1p, T1o); T1t = VSUB(T1r, T1s); T1u = VFNMS(LDK(KP923879532), T1t, T1q); T1w = VFMA(LDK(KP923879532), T1t, T1q); } ST(&(x[WS(rs, 7)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 15)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), VTW(0, 9), VTW(0, 15), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 }; void XSIMD(codelet_t3bv_16) (planner *p) { X(kdft_dit_register) (p, t3bv_16, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include dft/simd/t3b.h -sign 1 */ /* * This function contains 98 FP additions, 64 FP multiplications, * (or, 94 additions, 60 multiplications, 4 fused multiply/add), * 51 stack variables, 3 constants, and 32 memory accesses */ #include "dft/simd/t3b.h" static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP382683432, +0.382683432365089771728459984030398866761344562); DVK(KP923879532, +0.923879532511286756128183189396788286822416626); DVK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { V T1, T8, T9, Tl, Ti, TE, T4, Ta, TO, TV, Td, Tm, TA, TH, Ts; T1 = LDW(&(W[0])); T8 = LDW(&(W[TWVL * 2])); T9 = VZMUL(T1, T8); Tl = VZMULJ(T1, T8); Ti = LDW(&(W[TWVL * 6])); TE = VZMULJ(T1, Ti); T4 = LDW(&(W[TWVL * 4])); Ta = VZMULJ(T9, T4); TO = VZMUL(T8, T4); TV = VZMULJ(T1, T4); Td = VZMUL(T9, T4); Tm = VZMULJ(Tl, T4); TA = VZMUL(T1, T4); TH = VZMULJ(T8, T4); Ts = VZMUL(Tl, T4); { V TY, T1q, TR, T1r, T1m, T1n, TL, TZ, T1f, T1g, T1h, Th, T11, T1i, T1j; V T1k, Tw, T12, TU, TX, TW; TU = LD(&(x[0]), ms, &(x[0])); TW = LD(&(x[WS(rs, 8)]), ms, &(x[0])); TX = VZMUL(TV, TW); TY = VSUB(TU, TX); T1q = VADD(TU, TX); { V TN, TQ, TM, TP; TM = LD(&(x[WS(rs, 4)]), ms, &(x[0])); TN = VZMUL(T9, TM); TP = LD(&(x[WS(rs, 12)]), ms, &(x[0])); TQ = VZMUL(TO, TP); TR = VSUB(TN, TQ); T1r = VADD(TN, TQ); } { V Tz, TJ, TC, TG, TD, TK; { V Ty, TI, TB, TF; Ty = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Tz = VZMUL(Tl, Ty); TI = LD(&(x[WS(rs, 6)]), ms, &(x[0])); TJ = VZMUL(TH, TI); TB = LD(&(x[WS(rs, 10)]), ms, &(x[0])); TC = VZMUL(TA, TB); TF = LD(&(x[WS(rs, 14)]), ms, &(x[0])); TG = VZMUL(TE, TF); } T1m = VADD(Tz, TC); T1n = VADD(TG, TJ); TD = VSUB(Tz, TC); TK = VSUB(TG, TJ); TL = VMUL(LDK(KP707106781), VSUB(TD, TK)); TZ = VMUL(LDK(KP707106781), VADD(TD, TK)); } { V T3, Tf, T6, Tc, T7, Tg; { V T2, Te, T5, Tb; T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T3 = VZMUL(T1, T2); Te = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); Tf = VZMUL(Td, Te); T5 = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); T6 = VZMUL(T4, T5); Tb = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tc = VZMUL(Ta, Tb); } T1f = VADD(T3, T6); T1g = VADD(Tc, Tf); T1h = VSUB(T1f, T1g); T7 = VSUB(T3, T6); Tg = VSUB(Tc, Tf); Th = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), T7)); T11 = VFMA(LDK(KP382683432), T7, VMUL(LDK(KP923879532), Tg)); } { V Tk, Tu, To, Tr, Tp, Tv; { V Tj, Tt, Tn, Tq; Tj = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); Tk = VZMUL(Ti, Tj); Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); Tu = VZMUL(Ts, Tt); Tn = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); To = VZMUL(Tm, Tn); Tq = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Tr = VZMUL(T8, Tq); } T1i = VADD(Tk, To); T1j = VADD(Tr, Tu); T1k = VSUB(T1i, T1j); Tp = VSUB(Tk, To); Tv = VSUB(Tr, Tu); Tw = VFMA(LDK(KP923879532), Tp, VMUL(LDK(KP382683432), Tv)); T12 = VFNMS(LDK(KP382683432), Tp, VMUL(LDK(KP923879532), Tv)); } { V T1p, T1v, T1u, T1w; { V T1l, T1o, T1s, T1t; T1l = VMUL(LDK(KP707106781), VSUB(T1h, T1k)); T1o = VSUB(T1m, T1n); T1p = VBYI(VSUB(T1l, T1o)); T1v = VBYI(VADD(T1o, T1l)); T1s = VSUB(T1q, T1r); T1t = VMUL(LDK(KP707106781), VADD(T1h, T1k)); T1u = VSUB(T1s, T1t); T1w = VADD(T1s, T1t); } ST(&(x[WS(rs, 6)]), VADD(T1p, T1u), ms, &(x[0])); ST(&(x[WS(rs, 14)]), VSUB(T1w, T1v), ms, &(x[0])); ST(&(x[WS(rs, 10)]), VSUB(T1u, T1p), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VADD(T1v, T1w), ms, &(x[0])); } { V T1z, T1D, T1C, T1E; { V T1x, T1y, T1A, T1B; T1x = VADD(T1q, T1r); T1y = VADD(T1m, T1n); T1z = VSUB(T1x, T1y); T1D = VADD(T1x, T1y); T1A = VADD(T1f, T1g); T1B = VADD(T1i, T1j); T1C = VBYI(VSUB(T1A, T1B)); T1E = VADD(T1A, T1B); } ST(&(x[WS(rs, 12)]), VSUB(T1z, T1C), ms, &(x[0])); ST(&(x[0]), VADD(T1D, T1E), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VADD(T1z, T1C), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VSUB(T1D, T1E), ms, &(x[0])); } { V TT, T15, T14, T16; { V Tx, TS, T10, T13; Tx = VSUB(Th, Tw); TS = VSUB(TL, TR); TT = VBYI(VSUB(Tx, TS)); T15 = VBYI(VADD(TS, Tx)); T10 = VSUB(TY, TZ); T13 = VSUB(T11, T12); T14 = VSUB(T10, T13); T16 = VADD(T10, T13); } ST(&(x[WS(rs, 5)]), VADD(TT, T14), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 13)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 11)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VADD(T15, T16), ms, &(x[WS(rs, 1)])); } { V T19, T1d, T1c, T1e; { V T17, T18, T1a, T1b; T17 = VADD(TY, TZ); T18 = VADD(Th, Tw); T19 = VADD(T17, T18); T1d = VSUB(T17, T18); T1a = VADD(TR, TL); T1b = VADD(T11, T12); T1c = VBYI(VADD(T1a, T1b)); T1e = VBYI(VSUB(T1b, T1a)); } ST(&(x[WS(rs, 15)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), VTW(0, 9), VTW(0, 15), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 }; void XSIMD(codelet_t3bv_16) (planner *p) { X(kdft_dit_register) (p, t3bv_16, &desc); } #endif