/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:06:09 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include dft/simd/t3b.h -sign 1 */ /* * This function contains 138 FP additions, 118 FP multiplications, * (or, 92 additions, 72 multiplications, 46 fused multiply/add), * 73 stack variables, 4 constants, and 40 memory accesses */ #include "dft/simd/t3b.h" static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { V T2, T8, T9, TA, T3, Tc, T4, TV, T14, Tl, Tq, Tx, TQ, Td, Te; V T1d, Ti, Tt, T11; T2 = LDW(&(W[0])); T8 = LDW(&(W[TWVL * 2])); T9 = VZMUL(T2, T8); TA = VZMULJ(T2, T8); T3 = LDW(&(W[TWVL * 4])); Tc = VZMULJ(T9, T3); T4 = VZMUL(T2, T3); TV = VZMUL(T9, T3); T14 = VZMULJ(TA, T3); Tl = VZMULJ(T8, T3); Tq = VZMULJ(T2, T3); Tx = VZMUL(T8, T3); TQ = VZMUL(TA, T3); Td = LDW(&(W[TWVL * 6])); Te = VZMULJ(Tc, Td); T1d = VZMULJ(T9, Td); Ti = VZMULJ(T8, Td); Tt = VZMULJ(T2, Td); T11 = VZMULJ(TA, Td); { V T7, T1g, T1F, T23, TU, T1n, T1o, T18, Tp, TE, TF, T27, T28, T29, T1P; V T1S, T1T, T1h, T1i, T1j, T24, T25, T26, T1I, T1L, T1M, T1B, T1C; { V T1, T1f, T6, T1c, T1e, T5, T1b, T1D, T1E; T1 = LD(&(x[0]), ms, &(x[0])); T1e = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); T1f = VZMUL(T1d, T1e); T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); T6 = VZMUL(T4, T5); T1b = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T1c = VZMUL(Tc, T1b); T7 = VSUB(T1, T6); T1g = VSUB(T1c, T1f); T1D = VADD(T1, T6); T1E = VADD(T1c, T1f); T1F = VSUB(T1D, T1E); T23 = VADD(T1D, T1E); } { V Th, T1G, T10, T1O, T17, T1R, To, T1J, Tw, T1N, TN, T1H, TT, T1K, TD; V T1Q; { V Tb, Tg, Ta, Tf; Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tb = VZMUL(T9, Ta); Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); Tg = VZMUL(Te, Tf); Th = VSUB(Tb, Tg); T1G = VADD(Tb, Tg); } { V TX, TZ, TW, TY; TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); TX = VZMUL(TV, TW); TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); TZ = VZMUL(T8, TY); T10 = VSUB(TX, TZ); T1O = VADD(TX, TZ); } { V T13, T16, T12, T15; T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); T13 = VZMUL(T11, T12); T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); T16 = VZMUL(T14, T15); T17 = VSUB(T13, T16); T1R = VADD(T13, T16); } { V Tk, Tn, Tj, Tm; Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); Tk = VZMUL(Ti, Tj); Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Tn = VZMUL(Tl, Tm); To = VSUB(Tk, Tn); T1J = VADD(Tk, Tn); } { V Ts, Tv, Tr, Tu; Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Ts = VZMUL(Tq, Tr); Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); Tv = VZMUL(Tt, Tu); Tw = VSUB(Ts, Tv); T1N = VADD(Ts, Tv); } { V TK, TM, TJ, TL; TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); TK = VZMUL(T3, TJ); TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); TM = VZMUL(Td, TL); TN = VSUB(TK, TM); T1H = VADD(TK, TM); } { V TP, TS, TO, TR; TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); TP = VZMUL(T2, TO); TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); TS = VZMUL(TQ, TR); TT = VSUB(TP, TS); T1K = VADD(TP, TS); } { V Tz, TC, Ty, TB; Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); Tz = VZMUL(Tx, Ty); TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); TC = VZMUL(TA, TB); TD = VSUB(Tz, TC); T1Q = VADD(Tz, TC); } TU = VSUB(TN, TT); T1n = VSUB(Th, To); T1o = VSUB(Tw, TD); T18 = VSUB(T10, T17); Tp = VADD(Th, To); TE = VADD(Tw, TD); TF = VADD(Tp, TE); T27 = VADD(T1N, T1O); T28 = VADD(T1Q, T1R); T29 = VADD(T27, T28); T1P = VSUB(T1N, T1O); T1S = VSUB(T1Q, T1R); T1T = VADD(T1P, T1S); T1h = VADD(TN, TT); T1i = VADD(T10, T17); T1j = VADD(T1h, T1i); T24 = VADD(T1G, T1H); T25 = VADD(T1J, T1K); T26 = VADD(T24, T25); T1I = VSUB(T1G, T1H); T1L = VSUB(T1J, T1K); T1M = VADD(T1I, T1L); } T1B = VADD(T7, TF); T1C = VADD(T1g, T1j); ST(&(x[WS(rs, 15)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)])); { V T2c, T2a, T2b, T2g, T2i, T2e, T2f, T2h, T2d; T2c = VSUB(T26, T29); T2a = VADD(T26, T29); T2b = VFNMS(LDK(KP250000000), T2a, T23); T2e = VSUB(T24, T25); T2f = VSUB(T27, T28); T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e)); T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f)); ST(&(x[0]), VADD(T23, T2a), ms, &(x[0])); T2h = VFNMS(LDK(KP559016994), T2c, T2b); ST(&(x[WS(rs, 8)]), VFMAI(T2i, T2h), ms, &(x[0])); ST(&(x[WS(rs, 12)]), VFNMSI(T2i, T2h), ms, &(x[0])); T2d = VFMA(LDK(KP559016994), T2c, T2b); ST(&(x[WS(rs, 4)]), VFNMSI(T2g, T2d), ms, &(x[0])); ST(&(x[WS(rs, 16)]), VFMAI(T2g, T2d), ms, &(x[0])); } { V T1W, T1U, T1V, T20, T22, T1Y, T1Z, T21, T1X; T1W = VSUB(T1M, T1T); T1U = VADD(T1M, T1T); T1V = VFNMS(LDK(KP250000000), T1U, T1F); T1Y = VSUB(T1P, T1S); T1Z = VSUB(T1I, T1L); T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y)); T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z)); ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0])); T21 = VFMA(LDK(KP559016994), T1W, T1V); ST(&(x[WS(rs, 6)]), VFMAI(T22, T21), ms, &(x[0])); ST(&(x[WS(rs, 14)]), VFNMSI(T22, T21), ms, &(x[0])); T1X = VFNMS(LDK(KP559016994), T1W, T1V); ST(&(x[WS(rs, 2)]), VFNMSI(T20, T1X), ms, &(x[0])); ST(&(x[WS(rs, 18)]), VFMAI(T20, T1X), ms, &(x[0])); } { V T19, T1p, T1x, T1u, T1m, T1w, TI, T1t; T19 = VFMA(LDK(KP618033988), T18, TU); T1p = VFMA(LDK(KP618033988), T1o, T1n); T1x = VFNMS(LDK(KP618033988), T1n, T1o); T1u = VFNMS(LDK(KP618033988), TU, T18); { V T1k, T1l, TG, TH; T1k = VFNMS(LDK(KP250000000), T1j, T1g); T1l = VSUB(T1h, T1i); T1m = VFMA(LDK(KP559016994), T1l, T1k); T1w = VFNMS(LDK(KP559016994), T1l, T1k); TG = VFNMS(LDK(KP250000000), TF, T7); TH = VSUB(Tp, TE); TI = VFMA(LDK(KP559016994), TH, TG); T1t = VFNMS(LDK(KP559016994), TH, TG); } { V T1a, T1q, T1z, T1A; T1a = VFNMS(LDK(KP951056516), T19, TI); T1q = VFMA(LDK(KP951056516), T1p, T1m); ST(&(x[WS(rs, 19)]), VFNMSI(T1q, T1a), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VFMAI(T1q, T1a), ms, &(x[WS(rs, 1)])); T1z = VFNMS(LDK(KP951056516), T1u, T1t); T1A = VFMA(LDK(KP951056516), T1x, T1w); ST(&(x[WS(rs, 7)]), VFNMSI(T1A, T1z), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 13)]), VFMAI(T1A, T1z), ms, &(x[WS(rs, 1)])); } { V T1r, T1s, T1v, T1y; T1r = VFMA(LDK(KP951056516), T19, TI); T1s = VFNMS(LDK(KP951056516), T1p, T1m); ST(&(x[WS(rs, 11)]), VFNMSI(T1s, T1r), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VFMAI(T1s, T1r), ms, &(x[WS(rs, 1)])); T1v = VFMA(LDK(KP951056516), T1u, T1t); T1y = VFNMS(LDK(KP951056516), T1x, T1w); ST(&(x[WS(rs, 3)]), VFNMSI(T1y, T1v), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 17)]), VFMAI(T1y, T1v), ms, &(x[WS(rs, 1)])); } } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), VTW(0, 9), VTW(0, 19), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 }; void XSIMD(codelet_t3bv_20) (planner *p) { X(kdft_dit_register) (p, t3bv_20, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include dft/simd/t3b.h -sign 1 */ /* * This function contains 138 FP additions, 92 FP multiplications, * (or, 126 additions, 80 multiplications, 12 fused multiply/add), * 73 stack variables, 4 constants, and 40 memory accesses */ #include "dft/simd/t3b.h" static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { V T2, T8, T9, TA, T3, Tc, T4, TV, T14, Tl, Tq, Tx, TQ, Td, Te; V T1g, Ti, Tt, T11; T2 = LDW(&(W[0])); T8 = LDW(&(W[TWVL * 2])); T9 = VZMUL(T2, T8); TA = VZMULJ(T2, T8); T3 = LDW(&(W[TWVL * 4])); Tc = VZMULJ(T9, T3); T4 = VZMUL(T2, T3); TV = VZMUL(T9, T3); T14 = VZMULJ(TA, T3); Tl = VZMULJ(T8, T3); Tq = VZMULJ(T2, T3); Tx = VZMUL(T8, T3); TQ = VZMUL(TA, T3); Td = LDW(&(W[TWVL * 6])); Te = VZMULJ(Tc, Td); T1g = VZMULJ(T9, Td); Ti = VZMULJ(T8, Td); Tt = VZMULJ(T2, Td); T11 = VZMULJ(TA, Td); { V T7, T1j, T1U, T2a, TU, T1n, T1o, T18, Tp, TE, TF, T26, T27, T28, T1M; V T1P, T1W, T1b, T1c, T1k, T23, T24, T25, T1F, T1I, T1V, T1B, T1C; { V T1, T1i, T6, T1f, T1h, T5, T1e, T1S, T1T; T1 = LD(&(x[0]), ms, &(x[0])); T1h = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); T1i = VZMUL(T1g, T1h); T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); T6 = VZMUL(T4, T5); T1e = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T1f = VZMUL(Tc, T1e); T7 = VSUB(T1, T6); T1j = VSUB(T1f, T1i); T1S = VADD(T1, T6); T1T = VADD(T1f, T1i); T1U = VSUB(T1S, T1T); T2a = VADD(T1S, T1T); } { V Th, T1D, T10, T1L, T17, T1O, To, T1G, Tw, T1K, TN, T1E, TT, T1H, TD; V T1N; { V Tb, Tg, Ta, Tf; Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); Tb = VZMUL(T9, Ta); Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); Tg = VZMUL(Te, Tf); Th = VSUB(Tb, Tg); T1D = VADD(Tb, Tg); } { V TX, TZ, TW, TY; TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); TX = VZMUL(TV, TW); TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); TZ = VZMUL(T8, TY); T10 = VSUB(TX, TZ); T1L = VADD(TX, TZ); } { V T13, T16, T12, T15; T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); T13 = VZMUL(T11, T12); T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); T16 = VZMUL(T14, T15); T17 = VSUB(T13, T16); T1O = VADD(T13, T16); } { V Tk, Tn, Tj, Tm; Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); Tk = VZMUL(Ti, Tj); Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); Tn = VZMUL(Tl, Tm); To = VSUB(Tk, Tn); T1G = VADD(Tk, Tn); } { V Ts, Tv, Tr, Tu; Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); Ts = VZMUL(Tq, Tr); Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); Tv = VZMUL(Tt, Tu); Tw = VSUB(Ts, Tv); T1K = VADD(Ts, Tv); } { V TK, TM, TJ, TL; TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); TK = VZMUL(T3, TJ); TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); TM = VZMUL(Td, TL); TN = VSUB(TK, TM); T1E = VADD(TK, TM); } { V TP, TS, TO, TR; TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); TP = VZMUL(T2, TO); TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); TS = VZMUL(TQ, TR); TT = VSUB(TP, TS); T1H = VADD(TP, TS); } { V Tz, TC, Ty, TB; Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); Tz = VZMUL(Tx, Ty); TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); TC = VZMUL(TA, TB); TD = VSUB(Tz, TC); T1N = VADD(Tz, TC); } TU = VSUB(TN, TT); T1n = VSUB(Th, To); T1o = VSUB(Tw, TD); T18 = VSUB(T10, T17); Tp = VADD(Th, To); TE = VADD(Tw, TD); TF = VADD(Tp, TE); T26 = VADD(T1K, T1L); T27 = VADD(T1N, T1O); T28 = VADD(T26, T27); T1M = VSUB(T1K, T1L); T1P = VSUB(T1N, T1O); T1W = VADD(T1M, T1P); T1b = VADD(TN, TT); T1c = VADD(T10, T17); T1k = VADD(T1b, T1c); T23 = VADD(T1D, T1E); T24 = VADD(T1G, T1H); T25 = VADD(T23, T24); T1F = VSUB(T1D, T1E); T1I = VSUB(T1G, T1H); T1V = VADD(T1F, T1I); } T1B = VADD(T7, TF); T1C = VBYI(VADD(T1j, T1k)); ST(&(x[WS(rs, 15)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 5)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)])); { V T29, T2b, T2c, T2g, T2i, T2e, T2f, T2h, T2d; T29 = VMUL(LDK(KP559016994), VSUB(T25, T28)); T2b = VADD(T25, T28); T2c = VFNMS(LDK(KP250000000), T2b, T2a); T2e = VSUB(T23, T24); T2f = VSUB(T26, T27); T2g = VBYI(VFMA(LDK(KP951056516), T2e, VMUL(LDK(KP587785252), T2f))); T2i = VBYI(VFNMS(LDK(KP951056516), T2f, VMUL(LDK(KP587785252), T2e))); ST(&(x[0]), VADD(T2a, T2b), ms, &(x[0])); T2h = VSUB(T2c, T29); ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0])); ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0])); T2d = VADD(T29, T2c); ST(&(x[WS(rs, 4)]), VSUB(T2d, T2g), ms, &(x[0])); ST(&(x[WS(rs, 16)]), VADD(T2g, T2d), ms, &(x[0])); } { V T1Z, T1X, T1Y, T1R, T21, T1J, T1Q, T22, T20; T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W)); T1X = VADD(T1V, T1W); T1Y = VFNMS(LDK(KP250000000), T1X, T1U); T1J = VSUB(T1F, T1I); T1Q = VSUB(T1M, T1P); T1R = VBYI(VFNMS(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J))); T21 = VBYI(VFMA(LDK(KP951056516), T1J, VMUL(LDK(KP587785252), T1Q))); ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0])); T22 = VADD(T1Z, T1Y); ST(&(x[WS(rs, 6)]), VADD(T21, T22), ms, &(x[0])); ST(&(x[WS(rs, 14)]), VSUB(T22, T21), ms, &(x[0])); T20 = VSUB(T1Y, T1Z); ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0])); ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0])); } { V T19, T1p, T1w, T1u, T1m, T1x, TI, T1t; T19 = VFNMS(LDK(KP951056516), T18, VMUL(LDK(KP587785252), TU)); T1p = VFNMS(LDK(KP951056516), T1o, VMUL(LDK(KP587785252), T1n)); T1w = VFMA(LDK(KP951056516), T1n, VMUL(LDK(KP587785252), T1o)); T1u = VFMA(LDK(KP951056516), TU, VMUL(LDK(KP587785252), T18)); { V T1d, T1l, TG, TH; T1d = VMUL(LDK(KP559016994), VSUB(T1b, T1c)); T1l = VFNMS(LDK(KP250000000), T1k, T1j); T1m = VSUB(T1d, T1l); T1x = VADD(T1d, T1l); TG = VFNMS(LDK(KP250000000), TF, T7); TH = VMUL(LDK(KP559016994), VSUB(Tp, TE)); TI = VSUB(TG, TH); T1t = VADD(TH, TG); } { V T1a, T1q, T1z, T1A; T1a = VSUB(TI, T19); T1q = VBYI(VSUB(T1m, T1p)); ST(&(x[WS(rs, 17)]), VSUB(T1a, T1q), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VADD(T1a, T1q), ms, &(x[WS(rs, 1)])); T1z = VADD(T1t, T1u); T1A = VBYI(VSUB(T1x, T1w)); ST(&(x[WS(rs, 11)]), VSUB(T1z, T1A), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 9)]), VADD(T1z, T1A), ms, &(x[WS(rs, 1)])); } { V T1r, T1s, T1v, T1y; T1r = VADD(TI, T19); T1s = VBYI(VADD(T1p, T1m)); ST(&(x[WS(rs, 13)]), VSUB(T1r, T1s), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VADD(T1r, T1s), ms, &(x[WS(rs, 1)])); T1v = VSUB(T1t, T1u); T1y = VBYI(VADD(T1w, T1x)); ST(&(x[WS(rs, 19)]), VSUB(T1v, T1y), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VADD(T1v, T1y), ms, &(x[WS(rs, 1)])); } } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), VTW(0, 9), VTW(0, 19), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 }; void XSIMD(codelet_t3bv_20) (planner *p) { X(kdft_dit_register) (p, t3bv_20, &desc); } #endif