/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:05:51 EDT 2018 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 4 -name t3fv_4 -include dft/simd/t3f.h */ /* * This function contains 12 FP additions, 10 FP multiplications, * (or, 10 additions, 8 multiplications, 2 fused multiply/add), * 16 stack variables, 0 constants, and 8 memory accesses */ #include "dft/simd/t3f.h" static void t3fv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(4, rs)) { V T2, T3, T4; T2 = LDW(&(W[0])); T3 = LDW(&(W[TWVL * 2])); T4 = VZMULJ(T2, T3); { V T1, Tb, T6, T9, Ta, T5, T8; T1 = LD(&(x[0]), ms, &(x[0])); Ta = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Tb = VZMULJ(T3, Ta); T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T6 = VZMULJ(T4, T5); T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T9 = VZMULJ(T2, T8); { V T7, Tc, Td, Te; T7 = VSUB(T1, T6); Tc = VSUB(T9, Tb); ST(&(x[WS(rs, 1)]), VFNMSI(Tc, T7), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VFMAI(Tc, T7), ms, &(x[WS(rs, 1)])); Td = VADD(T1, T6); Te = VADD(T9, Tb); ST(&(x[WS(rs, 2)]), VSUB(Td, Te), ms, &(x[0])); ST(&(x[0]), VADD(Td, Te), ms, &(x[0])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 4, XSIMD_STRING("t3fv_4"), twinstr, &GENUS, {10, 8, 2, 0}, 0, 0, 0 }; void XSIMD(codelet_t3fv_4) (planner *p) { X(kdft_dit_register) (p, t3fv_4, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 4 -name t3fv_4 -include dft/simd/t3f.h */ /* * This function contains 12 FP additions, 8 FP multiplications, * (or, 12 additions, 8 multiplications, 0 fused multiply/add), * 16 stack variables, 0 constants, and 8 memory accesses */ #include "dft/simd/t3f.h" static void t3fv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(4, rs)) { V T2, T3, T4; T2 = LDW(&(W[0])); T3 = LDW(&(W[TWVL * 2])); T4 = VZMULJ(T2, T3); { V T1, Tb, T6, T9, Ta, T5, T8; T1 = LD(&(x[0]), ms, &(x[0])); Ta = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Tb = VZMULJ(T3, Ta); T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T6 = VZMULJ(T4, T5); T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T9 = VZMULJ(T2, T8); { V T7, Tc, Td, Te; T7 = VSUB(T1, T6); Tc = VBYI(VSUB(T9, Tb)); ST(&(x[WS(rs, 1)]), VSUB(T7, Tc), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VADD(T7, Tc), ms, &(x[WS(rs, 1)])); Td = VADD(T1, T6); Te = VADD(T9, Tb); ST(&(x[WS(rs, 2)]), VSUB(Td, Te), ms, &(x[0])); ST(&(x[0]), VADD(Td, Te), ms, &(x[0])); } } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 3), {TW_NEXT, VL, 0} }; static const ct_desc desc = { 4, XSIMD_STRING("t3fv_4"), twinstr, &GENUS, {12, 8, 0, 0}, 0, 0, 0 }; void XSIMD(codelet_t3fv_4) (planner *p) { X(kdft_dit_register) (p, t3fv_4, &desc); } #endif