/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:40 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hb2_20 -include rdft/scalar/hb.h */ /* * This function contains 276 FP additions, 198 FP multiplications, * (or, 136 additions, 58 multiplications, 140 fused multiply/add), * 129 stack variables, 4 constants, and 80 memory accesses */ #include "rdft/scalar/hb.h" static void hb2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { E TD, TH, TE, T1L, T1N, T1X, TG, T29, TI, T2b, T1V, T1O, T24, T36, T5b; E T1S, T1Y, T3b, T3e, T2o, T2Y, T2U, T31, T2s, T4y, T4u, T2f, T2c, T2g, T5g; E T2k, T1s, T48, T4c, T5q, T5m, T4k, T4f; { E T1r, T1M, T2T, T1R, T2X, T23, T2r, T1W, T2n, T2a, TF, T4x; TD = W[0]; TH = W[3]; TE = W[2]; TF = TD * TE; T1r = TD * TH; T1L = W[6]; T1M = TD * T1L; T2T = TE * T1L; T1N = W[7]; T1R = TD * T1N; T2X = TE * T1N; T1X = W[5]; T23 = TE * T1X; T2r = TD * T1X; TG = W[1]; T29 = FNMS(TG, TH, TF); TI = FMA(TG, TH, TF); T2b = FMA(TG, TE, T1r); T1V = W[4]; T1W = TE * T1V; T2n = TD * T1V; T2a = T29 * T1V; T1O = FMA(TG, T1N, T1M); T24 = FNMS(TH, T1V, T23); T36 = FNMS(TG, T1V, T2r); T5b = FNMS(T2b, T1X, T2a); T1S = FNMS(TG, T1L, T1R); T1Y = FMA(TH, T1X, T1W); T3b = FNMS(TH, T1X, T1W); T3e = FMA(TH, T1V, T23); T2o = FNMS(TG, T1X, T2n); T2Y = FNMS(TH, T1L, T2X); T2U = FMA(TH, T1N, T2T); T31 = FMA(TG, T1X, T2n); T2s = FMA(TG, T1V, T2r); T4x = T29 * T1N; T4y = FNMS(T2b, T1L, T4x); { E T4t, T2e, T2d, T2j; T4t = T29 * T1L; T4u = FMA(T2b, T1N, T4t); T2e = T29 * T1X; T2f = FNMS(T2b, T1V, T2e); T2c = FMA(T2b, T1X, T2a); T2d = T2c * T1L; T2j = T2c * T1N; T2g = FMA(T2f, T1N, T2d); T5g = FMA(T2b, T1V, T2e); T2k = FNMS(T2f, T1L, T2j); { E T47, T5p, T4b, T5l; T47 = TI * T1V; T5p = TI * T1N; T4b = TI * T1X; T5l = TI * T1L; T1s = FNMS(TG, TE, T1r); T48 = FMA(T1s, T1X, T47); T4c = FNMS(T1s, T1V, T4b); T5q = FNMS(T1s, T1L, T5p); T5m = FMA(T1s, T1N, T5l); T4k = FMA(T1s, T1V, T4b); T4f = FNMS(T1s, T1X, T47); } } } { E T7, T4B, T4V, TJ, T1z, T3j, T3V, T2H, T18, T42, T43, T1n, T2D, T53, T52; E T2A, T1H, T4R, T4O, T1G, T2O, T3I, T2P, T3P, T2I, T2J, T2K, T1A, T1B, T1C; E TC, T2w, T3Y, T40, T4I, T4K, TQ, TS, T3y, T3A, T4Y, T50; { E T3, T3h, T1y, T3i, T6, T3U, T1v, T3T; { E T1, T2, T1w, T1x; T1 = cr[0]; T2 = ci[WS(rs, 9)]; T3 = T1 + T2; T3h = T1 - T2; T1w = ci[WS(rs, 14)]; T1x = cr[WS(rs, 15)]; T1y = T1w - T1x; T3i = T1w + T1x; } { E T4, T5, T1t, T1u; T4 = cr[WS(rs, 5)]; T5 = ci[WS(rs, 4)]; T6 = T4 + T5; T3U = T4 - T5; T1t = ci[WS(rs, 19)]; T1u = cr[WS(rs, 10)]; T1v = T1t - T1u; T3T = T1t + T1u; } T7 = T3 + T6; T4B = T3h - T3i; T4V = T3U + T3T; TJ = T3 - T6; T1z = T1v - T1y; T3j = T3h + T3i; T3V = T3T - T3U; T2H = T1v + T1y; } { E Te, T4C, T4M, TK, T1f, T3m, T3L, T2y, TA, T4G, T4Q, TO, T17, T3w, T3H; E T2C, Tl, T4D, T4N, TL, T1m, T3p, T3O, T2z, Tt, T4F, T4P, TN, T10, T3t; E T3E, T2B; { E Ta, T3k, T1e, T3l, Td, T3K, T1b, T3J; { E T8, T9, T1c, T1d; T8 = cr[WS(rs, 4)]; T9 = ci[WS(rs, 5)]; Ta = T8 + T9; T3k = T8 - T9; T1c = ci[WS(rs, 10)]; T1d = cr[WS(rs, 19)]; T1e = T1c - T1d; T3l = T1c + T1d; } { E Tb, Tc, T19, T1a; Tb = cr[WS(rs, 9)]; Tc = ci[0]; Td = Tb + Tc; T3K = Tb - Tc; T19 = ci[WS(rs, 15)]; T1a = cr[WS(rs, 14)]; T1b = T19 - T1a; T3J = T19 + T1a; } Te = Ta + Td; T4C = T3k - T3l; T4M = T3K + T3J; TK = Ta - Td; T1f = T1b - T1e; T3m = T3k + T3l; T3L = T3J - T3K; T2y = T1b + T1e; } { E Tw, T3u, Tz, T3F, T13, T3G, T16, T3v; { E Tu, Tv, Tx, Ty; Tu = ci[WS(rs, 7)]; Tv = cr[WS(rs, 2)]; Tw = Tu + Tv; T3u = Tu - Tv; Tx = ci[WS(rs, 2)]; Ty = cr[WS(rs, 7)]; Tz = Tx + Ty; T3F = Tx - Ty; } { E T11, T12, T14, T15; T11 = ci[WS(rs, 17)]; T12 = cr[WS(rs, 12)]; T13 = T11 - T12; T3G = T11 + T12; T14 = ci[WS(rs, 12)]; T15 = cr[WS(rs, 17)]; T16 = T14 - T15; T3v = T14 + T15; } TA = Tw + Tz; T4G = T3u + T3v; T4Q = T3F - T3G; TO = Tw - Tz; T17 = T13 - T16; T3w = T3u - T3v; T3H = T3F + T3G; T2C = T13 + T16; } { E Th, T3n, T1l, T3o, Tk, T3M, T1i, T3N; { E Tf, Tg, T1j, T1k; Tf = ci[WS(rs, 3)]; Tg = cr[WS(rs, 6)]; Th = Tf + Tg; T3n = Tf - Tg; T1j = ci[WS(rs, 18)]; T1k = cr[WS(rs, 11)]; T1l = T1j - T1k; T3o = T1j + T1k; } { E Ti, Tj, T1g, T1h; Ti = cr[WS(rs, 1)]; Tj = ci[WS(rs, 8)]; Tk = Ti + Tj; T3M = Ti - Tj; T1g = ci[WS(rs, 13)]; T1h = cr[WS(rs, 16)]; T1i = T1g - T1h; T3N = T1g + T1h; } Tl = Th + Tk; T4D = T3n - T3o; T4N = T3M - T3N; TL = Th - Tk; T1m = T1i - T1l; T3p = T3n + T3o; T3O = T3M + T3N; T2z = T1i + T1l; } { E Tp, T3r, TZ, T3s, Ts, T3D, TW, T3C; { E Tn, To, TX, TY; Tn = cr[WS(rs, 8)]; To = ci[WS(rs, 1)]; Tp = Tn + To; T3r = Tn - To; TX = ci[WS(rs, 16)]; TY = cr[WS(rs, 13)]; TZ = TX - TY; T3s = TX + TY; } { E Tq, Tr, TU, TV; Tq = ci[WS(rs, 6)]; Tr = cr[WS(rs, 3)]; Ts = Tq + Tr; T3D = Tq - Tr; TU = ci[WS(rs, 11)]; TV = cr[WS(rs, 18)]; TW = TU - TV; T3C = TU + TV; } Tt = Tp + Ts; T4F = T3r + T3s; T4P = T3D + T3C; TN = Tp - Ts; T10 = TW - TZ; T3t = T3r - T3s; T3E = T3C - T3D; T2B = TW + TZ; } T18 = T10 - T17; T42 = T3t - T3w; T43 = T3m - T3p; T1n = T1f - T1m; T2D = T2B - T2C; T53 = T4F - T4G; T52 = T4C - T4D; T2A = T2y - T2z; T1H = TK - TL; T4R = T4P - T4Q; T4O = T4M - T4N; T1G = TN - TO; T2O = Te - Tl; T3I = T3E + T3H; T2P = Tt - TA; T3P = T3L + T3O; T2I = T2y + T2z; T2J = T2B + T2C; T2K = T2I + T2J; T1A = T1f + T1m; T1B = T10 + T17; T1C = T1A + T1B; { E Tm, TB, TM, TP; Tm = Te + Tl; TB = Tt + TA; TC = Tm + TB; T2w = Tm - TB; { E T3W, T3X, T4E, T4H; T3W = T3L - T3O; T3X = T3E - T3H; T3Y = T3W + T3X; T40 = T3W - T3X; T4E = T4C + T4D; T4H = T4F + T4G; T4I = T4E + T4H; T4K = T4E - T4H; } TM = TK + TL; TP = TN + TO; TQ = TM + TP; TS = TM - TP; { E T3q, T3x, T4W, T4X; T3q = T3m + T3p; T3x = T3t + T3w; T3y = T3q + T3x; T3A = T3q - T3x; T4W = T4M + T4N; T4X = T4P + T4Q; T4Y = T4W + T4X; T50 = T4W - T4X; } } } cr[0] = T7 + TC; ci[0] = T2H + T2K; { E T2t, T2q, T2u, T2p; T2t = T1z + T1C; T2p = TJ + TQ; T2q = T2o * T2p; T2u = T2s * T2p; cr[WS(rs, 10)] = FNMS(T2s, T2t, T2q); ci[WS(rs, 10)] = FMA(T2o, T2t, T2u); } { E T5t, T5u, T5v, T5w; T5t = T4B + T4I; T5u = T2c * T5t; T5v = T4V + T4Y; T5w = T2c * T5v; cr[WS(rs, 5)] = FNMS(T2f, T5v, T5u); ci[WS(rs, 5)] = FMA(T2f, T5t, T5w); } { E T4v, T4w, T4z, T4A; T4v = T3j + T3y; T4w = T4u * T4v; T4z = T3V + T3Y; T4A = T4u * T4z; cr[WS(rs, 15)] = FNMS(T4y, T4z, T4w); ci[WS(rs, 15)] = FMA(T4y, T4v, T4A); } { E T3R, T4p, T49, T4i, T45, T4r, T4d, T4n; { E T3Q, T4h, T3B, T4g, T3z; T3Q = FNMS(KP618033988, T3P, T3I); T4h = FMA(KP618033988, T3I, T3P); T3z = FNMS(KP250000000, T3y, T3j); T3B = FNMS(KP559016994, T3A, T3z); T4g = FMA(KP559016994, T3A, T3z); T3R = FNMS(KP951056516, T3Q, T3B); T4p = FMA(KP951056516, T4h, T4g); T49 = FMA(KP951056516, T3Q, T3B); T4i = FNMS(KP951056516, T4h, T4g); } { E T44, T4m, T41, T4l, T3Z; T44 = FNMS(KP618033988, T43, T42); T4m = FMA(KP618033988, T42, T43); T3Z = FNMS(KP250000000, T3Y, T3V); T41 = FNMS(KP559016994, T40, T3Z); T4l = FMA(KP559016994, T40, T3Z); T45 = FMA(KP951056516, T44, T41); T4r = FNMS(KP951056516, T4m, T4l); T4d = FNMS(KP951056516, T44, T41); T4n = FMA(KP951056516, T4m, T4l); } { E T3S, T46, T4a, T4e; T3S = TE * T3R; cr[WS(rs, 3)] = FNMS(TH, T45, T3S); T46 = TE * T45; ci[WS(rs, 3)] = FMA(TH, T3R, T46); T4a = T48 * T49; cr[WS(rs, 7)] = FNMS(T4c, T4d, T4a); T4e = T48 * T4d; ci[WS(rs, 7)] = FMA(T4c, T49, T4e); } { E T4j, T4o, T4q, T4s; T4j = T4f * T4i; cr[WS(rs, 11)] = FNMS(T4k, T4n, T4j); T4o = T4f * T4n; ci[WS(rs, 11)] = FMA(T4k, T4i, T4o); T4q = T1L * T4p; cr[WS(rs, 19)] = FNMS(T1N, T4r, T4q); T4s = T1L * T4r; ci[WS(rs, 19)] = FMA(T1N, T4p, T4s); } } { E T4T, T5n, T57, T5e, T55, T5r, T59, T5j; { E T4S, T5d, T4L, T5c, T4J; T4S = FMA(KP618033988, T4R, T4O); T5d = FNMS(KP618033988, T4O, T4R); T4J = FNMS(KP250000000, T4I, T4B); T4L = FMA(KP559016994, T4K, T4J); T5c = FNMS(KP559016994, T4K, T4J); T4T = FNMS(KP951056516, T4S, T4L); T5n = FMA(KP951056516, T5d, T5c); T57 = FMA(KP951056516, T4S, T4L); T5e = FNMS(KP951056516, T5d, T5c); } { E T54, T5i, T51, T5h, T4Z; T54 = FMA(KP618033988, T53, T52); T5i = FNMS(KP618033988, T52, T53); T4Z = FNMS(KP250000000, T4Y, T4V); T51 = FMA(KP559016994, T50, T4Z); T5h = FNMS(KP559016994, T50, T4Z); T55 = FMA(KP951056516, T54, T51); T5r = FNMS(KP951056516, T5i, T5h); T59 = FNMS(KP951056516, T54, T51); T5j = FMA(KP951056516, T5i, T5h); } { E T4U, T56, T58, T5a; T4U = TD * T4T; cr[WS(rs, 1)] = FNMS(TG, T55, T4U); T56 = TD * T55; ci[WS(rs, 1)] = FMA(TG, T4T, T56); T58 = T1V * T57; cr[WS(rs, 9)] = FNMS(T1X, T59, T58); T5a = T1V * T59; ci[WS(rs, 9)] = FMA(T1X, T57, T5a); } { E T5f, T5k, T5o, T5s; T5f = T5b * T5e; cr[WS(rs, 13)] = FNMS(T5g, T5j, T5f); T5k = T5b * T5j; ci[WS(rs, 13)] = FMA(T5g, T5e, T5k); T5o = T5m * T5n; cr[WS(rs, 17)] = FNMS(T5q, T5r, T5o); T5s = T5m * T5r; ci[WS(rs, 17)] = FMA(T5q, T5n, T5s); } } { E T2Q, T38, T2N, T37, T2F, T3c, T2V, T34, T2L, T2M; T2Q = FMA(KP618033988, T2P, T2O); T38 = FNMS(KP618033988, T2O, T2P); T2L = FNMS(KP250000000, T2K, T2H); T2M = T2I - T2J; T2N = FMA(KP559016994, T2M, T2L); T37 = FNMS(KP559016994, T2M, T2L); { E T2E, T33, T2x, T32, T2v; T2E = FMA(KP618033988, T2D, T2A); T33 = FNMS(KP618033988, T2A, T2D); T2v = FNMS(KP250000000, TC, T7); T2x = FMA(KP559016994, T2w, T2v); T32 = FNMS(KP559016994, T2w, T2v); T2F = FMA(KP951056516, T2E, T2x); T3c = FMA(KP951056516, T33, T32); T2V = FNMS(KP951056516, T2E, T2x); T34 = FNMS(KP951056516, T33, T32); } { E T2G, T2S, T2R, T3d, T3g, T3f; T2G = T29 * T2F; T2S = T2b * T2F; T2R = FNMS(KP951056516, T2Q, T2N); cr[WS(rs, 4)] = FNMS(T2b, T2R, T2G); ci[WS(rs, 4)] = FMA(T29, T2R, T2S); T3d = T3b * T3c; T3g = T3e * T3c; T3f = FNMS(KP951056516, T38, T37); cr[WS(rs, 12)] = FNMS(T3e, T3f, T3d); ci[WS(rs, 12)] = FMA(T3b, T3f, T3g); } { E T2W, T30, T2Z, T35, T3a, T39; T2W = T2U * T2V; T30 = T2Y * T2V; T2Z = FMA(KP951056516, T2Q, T2N); cr[WS(rs, 16)] = FNMS(T2Y, T2Z, T2W); ci[WS(rs, 16)] = FMA(T2U, T2Z, T30); T35 = T31 * T34; T3a = T36 * T34; T39 = FMA(KP951056516, T38, T37); cr[WS(rs, 8)] = FNMS(T36, T39, T35); ci[WS(rs, 8)] = FMA(T31, T39, T3a); } } { E T1I, T26, T1F, T25, T1p, T2h, T1P, T21, T1D, T1E; T1I = FNMS(KP618033988, T1H, T1G); T26 = FMA(KP618033988, T1G, T1H); T1D = FNMS(KP250000000, T1C, T1z); T1E = T1A - T1B; T1F = FNMS(KP559016994, T1E, T1D); T25 = FMA(KP559016994, T1E, T1D); { E T1o, T20, TT, T1Z, TR; T1o = FNMS(KP618033988, T1n, T18); T20 = FMA(KP618033988, T18, T1n); TR = FNMS(KP250000000, TQ, TJ); TT = FNMS(KP559016994, TS, TR); T1Z = FMA(KP559016994, TS, TR); T1p = FMA(KP951056516, T1o, TT); T2h = FMA(KP951056516, T20, T1Z); T1P = FNMS(KP951056516, T1o, TT); T21 = FNMS(KP951056516, T20, T1Z); } { E T1q, T1K, T1J, T2i, T2m, T2l; T1q = TI * T1p; T1K = T1s * T1p; T1J = FNMS(KP951056516, T1I, T1F); cr[WS(rs, 2)] = FNMS(T1s, T1J, T1q); ci[WS(rs, 2)] = FMA(TI, T1J, T1K); T2i = T2g * T2h; T2m = T2k * T2h; T2l = FNMS(KP951056516, T26, T25); cr[WS(rs, 14)] = FNMS(T2k, T2l, T2i); ci[WS(rs, 14)] = FMA(T2g, T2l, T2m); } { E T1Q, T1U, T1T, T22, T28, T27; T1Q = T1O * T1P; T1U = T1S * T1P; T1T = FMA(KP951056516, T1I, T1F); cr[WS(rs, 18)] = FNMS(T1S, T1T, T1Q); ci[WS(rs, 18)] = FMA(T1O, T1T, T1U); T22 = T1Y * T21; T28 = T24 * T21; T27 = FMA(KP951056516, T26, T25); cr[WS(rs, 6)] = FNMS(T24, T27, T22); ci[WS(rs, 6)] = FMA(T1Y, T27, T28); } } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 19}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, {136, 58, 140, 0} }; void X(codelet_hb2_20) (planner *p) { X(khc2hc_register) (p, hb2_20, &desc); } #else /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hb2_20 -include rdft/scalar/hb.h */ /* * This function contains 276 FP additions, 164 FP multiplications, * (or, 204 additions, 92 multiplications, 72 fused multiply/add), * 137 stack variables, 4 constants, and 80 memory accesses */ #include "rdft/scalar/hb.h" static void hb2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { E TD, TG, TE, TH, TJ, T1t, T27, T25, T1T, T1R, T1V, T2j, T2Z, T21, T2X; E T2T, T2n, T2P, T3V, T41, T3R, T3X, T29, T2c, T4H, T4L, T1L, T1M, T1N, T2d; E T4R, T1P, T4P, T49, T2N, T2f, T47, T2L; { E T1U, T2l, T1Z, T2i, T1S, T2m, T20, T2h; { E TF, T1s, TI, T1r; TD = W[0]; TG = W[1]; TE = W[2]; TH = W[3]; TF = TD * TE; T1s = TG * TE; TI = TG * TH; T1r = TD * TH; TJ = TF + TI; T1t = T1r - T1s; T27 = T1r + T1s; T25 = TF - TI; T1T = W[5]; T1U = TH * T1T; T2l = TD * T1T; T1Z = TE * T1T; T2i = TG * T1T; T1R = W[4]; T1S = TE * T1R; T2m = TG * T1R; T20 = TH * T1R; T2h = TD * T1R; } T1V = T1S + T1U; T2j = T2h - T2i; T2Z = T1Z + T20; T21 = T1Z - T20; T2X = T1S - T1U; T2T = T2l - T2m; T2n = T2l + T2m; T2P = T2h + T2i; { E T3T, T3U, T3P, T3Q; T3T = TJ * T1T; T3U = T1t * T1R; T3V = T3T - T3U; T41 = T3T + T3U; T3P = TJ * T1R; T3Q = T1t * T1T; T3R = T3P + T3Q; T3X = T3P - T3Q; { E T26, T28, T2a, T2b; T26 = T25 * T1R; T28 = T27 * T1T; T29 = T26 + T28; T2a = T25 * T1T; T2b = T27 * T1R; T2c = T2a - T2b; T4H = T26 - T28; T4L = T2a + T2b; T1L = W[6]; T1M = W[7]; T1N = FMA(TD, T1L, TG * T1M); T2d = FMA(T29, T1L, T2c * T1M); T4R = FNMS(T1t, T1L, TJ * T1M); T1P = FNMS(TG, T1L, TD * T1M); T4P = FMA(TJ, T1L, T1t * T1M); T49 = FNMS(T27, T1L, T25 * T1M); T2N = FNMS(TH, T1L, TE * T1M); T2f = FNMS(T2c, T1L, T29 * T1M); T47 = FMA(T25, T1L, T27 * T1M); T2L = FMA(TE, T1L, TH * T1M); } } } { E T7, T4i, T4x, TK, T1D, T3i, T3E, T2D, T19, T3L, T3M, T1o, T2x, T4C, T4B; E T2u, T1v, T4r, T4o, T1u, T2H, T37, T2I, T3e, T3p, T3w, T3x, Tm, TB, TC; E T4u, T4v, T4y, T2A, T2B, T2E, T1E, T1F, T1G, T4d, T4g, T4j, T3F, T3G, T3H; E TN, TQ, TR, T48, T4a; { E T3, T3g, T1C, T3h, T6, T3D, T1z, T3C; { E T1, T2, T1A, T1B; T1 = cr[0]; T2 = ci[WS(rs, 9)]; T3 = T1 + T2; T3g = T1 - T2; T1A = ci[WS(rs, 14)]; T1B = cr[WS(rs, 15)]; T1C = T1A - T1B; T3h = T1A + T1B; } { E T4, T5, T1x, T1y; T4 = cr[WS(rs, 5)]; T5 = ci[WS(rs, 4)]; T6 = T4 + T5; T3D = T4 - T5; T1x = ci[WS(rs, 19)]; T1y = cr[WS(rs, 10)]; T1z = T1x - T1y; T3C = T1x + T1y; } T7 = T3 + T6; T4i = T3g - T3h; T4x = T3D + T3C; TK = T3 - T6; T1D = T1z - T1C; T3i = T3g + T3h; T3E = T3C - T3D; T2D = T1z + T1C; } { E Te, T4b, T4m, TL, T11, T33, T3l, T2s, TA, T4f, T4q, TP, T1n, T3d, T3v; E T2w, Tl, T4c, T4n, TM, T18, T36, T3o, T2t, Tt, T4e, T4p, TO, T1g, T3a; E T3s, T2v; { E Ta, T3j, T10, T3k, Td, T32, TX, T31; { E T8, T9, TY, TZ; T8 = cr[WS(rs, 4)]; T9 = ci[WS(rs, 5)]; Ta = T8 + T9; T3j = T8 - T9; TY = ci[WS(rs, 10)]; TZ = cr[WS(rs, 19)]; T10 = TY - TZ; T3k = TY + TZ; } { E Tb, Tc, TV, TW; Tb = cr[WS(rs, 9)]; Tc = ci[0]; Td = Tb + Tc; T32 = Tb - Tc; TV = ci[WS(rs, 15)]; TW = cr[WS(rs, 14)]; TX = TV - TW; T31 = TV + TW; } Te = Ta + Td; T4b = T3j - T3k; T4m = T32 + T31; TL = Ta - Td; T11 = TX - T10; T33 = T31 - T32; T3l = T3j + T3k; T2s = TX + T10; } { E Tw, T3t, Tz, T3b, T1j, T3c, T1m, T3u; { E Tu, Tv, Tx, Ty; Tu = ci[WS(rs, 7)]; Tv = cr[WS(rs, 2)]; Tw = Tu + Tv; T3t = Tu - Tv; Tx = ci[WS(rs, 2)]; Ty = cr[WS(rs, 7)]; Tz = Tx + Ty; T3b = Tx - Ty; } { E T1h, T1i, T1k, T1l; T1h = ci[WS(rs, 17)]; T1i = cr[WS(rs, 12)]; T1j = T1h - T1i; T3c = T1h + T1i; T1k = ci[WS(rs, 12)]; T1l = cr[WS(rs, 17)]; T1m = T1k - T1l; T3u = T1k + T1l; } TA = Tw + Tz; T4f = T3t + T3u; T4q = T3b - T3c; TP = Tw - Tz; T1n = T1j - T1m; T3d = T3b + T3c; T3v = T3t - T3u; T2w = T1j + T1m; } { E Th, T3m, T17, T3n, Tk, T34, T14, T35; { E Tf, Tg, T15, T16; Tf = ci[WS(rs, 3)]; Tg = cr[WS(rs, 6)]; Th = Tf + Tg; T3m = Tf - Tg; T15 = ci[WS(rs, 18)]; T16 = cr[WS(rs, 11)]; T17 = T15 - T16; T3n = T15 + T16; } { E Ti, Tj, T12, T13; Ti = cr[WS(rs, 1)]; Tj = ci[WS(rs, 8)]; Tk = Ti + Tj; T34 = Ti - Tj; T12 = ci[WS(rs, 13)]; T13 = cr[WS(rs, 16)]; T14 = T12 - T13; T35 = T12 + T13; } Tl = Th + Tk; T4c = T3m - T3n; T4n = T34 - T35; TM = Th - Tk; T18 = T14 - T17; T36 = T34 + T35; T3o = T3m + T3n; T2t = T14 + T17; } { E Tp, T3q, T1f, T3r, Ts, T39, T1c, T38; { E Tn, To, T1d, T1e; Tn = cr[WS(rs, 8)]; To = ci[WS(rs, 1)]; Tp = Tn + To; T3q = Tn - To; T1d = ci[WS(rs, 16)]; T1e = cr[WS(rs, 13)]; T1f = T1d - T1e; T3r = T1d + T1e; } { E Tq, Tr, T1a, T1b; Tq = ci[WS(rs, 6)]; Tr = cr[WS(rs, 3)]; Ts = Tq + Tr; T39 = Tq - Tr; T1a = ci[WS(rs, 11)]; T1b = cr[WS(rs, 18)]; T1c = T1a - T1b; T38 = T1a + T1b; } Tt = Tp + Ts; T4e = T3q + T3r; T4p = T39 + T38; TO = Tp - Ts; T1g = T1c - T1f; T3a = T38 - T39; T3s = T3q - T3r; T2v = T1c + T1f; } T19 = T11 - T18; T3L = T3l - T3o; T3M = T3s - T3v; T1o = T1g - T1n; T2x = T2v - T2w; T4C = T4e - T4f; T4B = T4b - T4c; T2u = T2s - T2t; T1v = TO - TP; T4r = T4p - T4q; T4o = T4m - T4n; T1u = TL - TM; T2H = Te - Tl; T37 = T33 + T36; T2I = Tt - TA; T3e = T3a + T3d; T3p = T3l + T3o; T3w = T3s + T3v; T3x = T3p + T3w; Tm = Te + Tl; TB = Tt + TA; TC = Tm + TB; T4u = T4m + T4n; T4v = T4p + T4q; T4y = T4u + T4v; T2A = T2s + T2t; T2B = T2v + T2w; T2E = T2A + T2B; T1E = T11 + T18; T1F = T1g + T1n; T1G = T1E + T1F; T4d = T4b + T4c; T4g = T4e + T4f; T4j = T4d + T4g; T3F = T33 - T36; T3G = T3a - T3d; T3H = T3F + T3G; TN = TL + TM; TQ = TO + TP; TR = TN + TQ; } cr[0] = T7 + TC; ci[0] = T2D + T2E; { E T2k, T2o, T4T, T4U; T2k = TK + TR; T2o = T1D + T1G; cr[WS(rs, 10)] = FNMS(T2n, T2o, T2j * T2k); ci[WS(rs, 10)] = FMA(T2n, T2k, T2j * T2o); T4T = T4i + T4j; T4U = T4x + T4y; cr[WS(rs, 5)] = FNMS(T2c, T4U, T29 * T4T); ci[WS(rs, 5)] = FMA(T29, T4U, T2c * T4T); } T48 = T3i + T3x; T4a = T3E + T3H; cr[WS(rs, 15)] = FNMS(T49, T4a, T47 * T48); ci[WS(rs, 15)] = FMA(T47, T4a, T49 * T48); { E T2y, T2J, T2V, T2R, T2G, T2U, T2r, T2Q; T2y = FMA(KP951056516, T2u, KP587785252 * T2x); T2J = FMA(KP951056516, T2H, KP587785252 * T2I); T2V = FNMS(KP951056516, T2I, KP587785252 * T2H); T2R = FNMS(KP951056516, T2x, KP587785252 * T2u); { E T2C, T2F, T2p, T2q; T2C = KP559016994 * (T2A - T2B); T2F = FNMS(KP250000000, T2E, T2D); T2G = T2C + T2F; T2U = T2F - T2C; T2p = KP559016994 * (Tm - TB); T2q = FNMS(KP250000000, TC, T7); T2r = T2p + T2q; T2Q = T2q - T2p; } { E T2z, T2K, T2Y, T30; T2z = T2r + T2y; T2K = T2G - T2J; cr[WS(rs, 4)] = FNMS(T27, T2K, T25 * T2z); ci[WS(rs, 4)] = FMA(T27, T2z, T25 * T2K); T2Y = T2Q - T2R; T30 = T2V + T2U; cr[WS(rs, 12)] = FNMS(T2Z, T30, T2X * T2Y); ci[WS(rs, 12)] = FMA(T2Z, T2Y, T2X * T30); } { E T2M, T2O, T2S, T2W; T2M = T2r - T2y; T2O = T2J + T2G; cr[WS(rs, 16)] = FNMS(T2N, T2O, T2L * T2M); ci[WS(rs, 16)] = FMA(T2N, T2M, T2L * T2O); T2S = T2Q + T2R; T2W = T2U - T2V; cr[WS(rs, 8)] = FNMS(T2T, T2W, T2P * T2S); ci[WS(rs, 8)] = FMA(T2T, T2S, T2P * T2W); } } { E T4s, T4D, T4N, T4I, T4A, T4M, T4l, T4J; T4s = FMA(KP951056516, T4o, KP587785252 * T4r); T4D = FMA(KP951056516, T4B, KP587785252 * T4C); T4N = FNMS(KP951056516, T4C, KP587785252 * T4B); T4I = FNMS(KP951056516, T4r, KP587785252 * T4o); { E T4w, T4z, T4h, T4k; T4w = KP559016994 * (T4u - T4v); T4z = FNMS(KP250000000, T4y, T4x); T4A = T4w + T4z; T4M = T4z - T4w; T4h = KP559016994 * (T4d - T4g); T4k = FNMS(KP250000000, T4j, T4i); T4l = T4h + T4k; T4J = T4k - T4h; } { E T4t, T4E, T4Q, T4S; T4t = T4l - T4s; T4E = T4A + T4D; cr[WS(rs, 1)] = FNMS(TG, T4E, TD * T4t); ci[WS(rs, 1)] = FMA(TD, T4E, TG * T4t); T4Q = T4J - T4I; T4S = T4M + T4N; cr[WS(rs, 17)] = FNMS(T4R, T4S, T4P * T4Q); ci[WS(rs, 17)] = FMA(T4P, T4S, T4R * T4Q); } { E T4F, T4G, T4K, T4O; T4F = T4s + T4l; T4G = T4A - T4D; cr[WS(rs, 9)] = FNMS(T1T, T4G, T1R * T4F); ci[WS(rs, 9)] = FMA(T1R, T4G, T1T * T4F); T4K = T4I + T4J; T4O = T4M - T4N; cr[WS(rs, 13)] = FNMS(T4L, T4O, T4H * T4K); ci[WS(rs, 13)] = FMA(T4H, T4O, T4L * T4K); } } { E T1p, T1w, T22, T1X, T1J, T23, TU, T1W; T1p = FNMS(KP951056516, T1o, KP587785252 * T19); T1w = FNMS(KP951056516, T1v, KP587785252 * T1u); T22 = FMA(KP951056516, T1u, KP587785252 * T1v); T1X = FMA(KP951056516, T19, KP587785252 * T1o); { E T1H, T1I, TS, TT; T1H = FNMS(KP250000000, T1G, T1D); T1I = KP559016994 * (T1E - T1F); T1J = T1H - T1I; T23 = T1I + T1H; TS = FNMS(KP250000000, TR, TK); TT = KP559016994 * (TN - TQ); TU = TS - TT; T1W = TT + TS; } { E T1q, T1K, T2e, T2g; T1q = TU - T1p; T1K = T1w + T1J; cr[WS(rs, 2)] = FNMS(T1t, T1K, TJ * T1q); ci[WS(rs, 2)] = FMA(T1t, T1q, TJ * T1K); T2e = T1W + T1X; T2g = T23 - T22; cr[WS(rs, 14)] = FNMS(T2f, T2g, T2d * T2e); ci[WS(rs, 14)] = FMA(T2f, T2e, T2d * T2g); } { E T1O, T1Q, T1Y, T24; T1O = TU + T1p; T1Q = T1J - T1w; cr[WS(rs, 18)] = FNMS(T1P, T1Q, T1N * T1O); ci[WS(rs, 18)] = FMA(T1P, T1O, T1N * T1Q); T1Y = T1W - T1X; T24 = T22 + T23; cr[WS(rs, 6)] = FNMS(T21, T24, T1V * T1Y); ci[WS(rs, 6)] = FMA(T21, T1Y, T1V * T24); } } { E T3f, T3N, T43, T3Z, T3K, T42, T3A, T3Y; T3f = FNMS(KP951056516, T3e, KP587785252 * T37); T3N = FNMS(KP951056516, T3M, KP587785252 * T3L); T43 = FMA(KP951056516, T3L, KP587785252 * T3M); T3Z = FMA(KP951056516, T37, KP587785252 * T3e); { E T3I, T3J, T3y, T3z; T3I = FNMS(KP250000000, T3H, T3E); T3J = KP559016994 * (T3F - T3G); T3K = T3I - T3J; T42 = T3J + T3I; T3y = FNMS(KP250000000, T3x, T3i); T3z = KP559016994 * (T3p - T3w); T3A = T3y - T3z; T3Y = T3z + T3y; } { E T3B, T3O, T45, T46; T3B = T3f + T3A; T3O = T3K - T3N; cr[WS(rs, 3)] = FNMS(TH, T3O, TE * T3B); ci[WS(rs, 3)] = FMA(TE, T3O, TH * T3B); T45 = T3Z + T3Y; T46 = T42 - T43; cr[WS(rs, 19)] = FNMS(T1M, T46, T1L * T45); ci[WS(rs, 19)] = FMA(T1L, T46, T1M * T45); } { E T3S, T3W, T40, T44; T3S = T3A - T3f; T3W = T3K + T3N; cr[WS(rs, 7)] = FNMS(T3V, T3W, T3R * T3S); ci[WS(rs, 7)] = FMA(T3R, T3W, T3V * T3S); T40 = T3Y - T3Z; T44 = T42 + T43; cr[WS(rs, 11)] = FNMS(T41, T44, T3X * T40); ci[WS(rs, 11)] = FMA(T3X, T44, T41 * T40); } } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 19}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, {204, 92, 72, 0} }; void X(codelet_hb2_20) (planner *p) { X(khc2hc_register) (p, hb2_20, &desc); } #endif