/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:37 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hb2_8 -include rdft/scalar/hb.h */ /* * This function contains 74 FP additions, 50 FP multiplications, * (or, 44 additions, 20 multiplications, 30 fused multiply/add), * 47 stack variables, 1 constants, and 32 memory accesses */ #include "rdft/scalar/hb.h" static void hb2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E Tf, Tg, Tl, Tp, Ti, Tj, Tk, T1b, T1u, T1e, T1o, To, Tq, TK; { E Th, T1n, T1t, Tn, Tm, TJ; Tf = W[0]; Tg = W[2]; Th = Tf * Tg; Tl = W[4]; T1n = Tf * Tl; Tp = W[5]; T1t = Tf * Tp; Ti = W[1]; Tj = W[3]; Tn = Tf * Tj; Tk = FMA(Ti, Tj, Th); T1b = FNMS(Ti, Tj, Th); T1u = FNMS(Ti, Tl, T1t); T1e = FMA(Ti, Tg, Tn); T1o = FMA(Ti, Tp, T1n); Tm = Tk * Tl; TJ = Tk * Tp; To = FNMS(Ti, Tg, Tn); Tq = FMA(To, Tp, Tm); TK = FNMS(To, Tl, TJ); } { E T7, T1p, T1v, Tv, TP, T13, T1h, TZ, Te, T1k, T1w, T1q, TQ, TR, T10; E TG, T14; { E T3, Tr, TO, T1f, T6, TL, Tu, T1g; { E T1, T2, TM, TN; T1 = cr[0]; T2 = ci[WS(rs, 3)]; T3 = T1 + T2; Tr = T1 - T2; TM = ci[WS(rs, 7)]; TN = cr[WS(rs, 4)]; TO = TM + TN; T1f = TM - TN; } { E T4, T5, Ts, Tt; T4 = cr[WS(rs, 2)]; T5 = ci[WS(rs, 1)]; T6 = T4 + T5; TL = T4 - T5; Ts = ci[WS(rs, 5)]; Tt = cr[WS(rs, 6)]; Tu = Ts + Tt; T1g = Ts - Tt; } T7 = T3 + T6; T1p = T3 - T6; T1v = T1f - T1g; Tv = Tr - Tu; TP = TL + TO; T13 = TO - TL; T1h = T1f + T1g; TZ = Tr + Tu; } { E Ta, Tw, TE, T1j, Td, TB, Tz, T1i, TA, TF; { E T8, T9, TC, TD; T8 = cr[WS(rs, 1)]; T9 = ci[WS(rs, 2)]; Ta = T8 + T9; Tw = T8 - T9; TC = ci[WS(rs, 4)]; TD = cr[WS(rs, 7)]; TE = TC + TD; T1j = TC - TD; } { E Tb, Tc, Tx, Ty; Tb = ci[0]; Tc = cr[WS(rs, 3)]; Td = Tb + Tc; TB = Tb - Tc; Tx = ci[WS(rs, 6)]; Ty = cr[WS(rs, 5)]; Tz = Tx + Ty; T1i = Tx - Ty; } Te = Ta + Td; T1k = T1i + T1j; T1w = Ta - Td; T1q = T1j - T1i; TQ = Tw + Tz; TR = TB + TE; T10 = TQ + TR; TA = Tw - Tz; TF = TB - TE; TG = TA + TF; T14 = TA - TF; } cr[0] = T7 + Te; ci[0] = T1h + T1k; { E T11, T12, T15, T16; T11 = FNMS(KP707106781, T10, TZ); T12 = Tg * T11; T15 = FMA(KP707106781, T14, T13); T16 = Tg * T15; cr[WS(rs, 3)] = FNMS(Tj, T15, T12); ci[WS(rs, 3)] = FMA(Tj, T11, T16); } { E T1z, T1A, T1B, T1C; T1z = T1p + T1q; T1A = Tk * T1z; T1B = T1w + T1v; T1C = Tk * T1B; cr[WS(rs, 2)] = FNMS(To, T1B, T1A); ci[WS(rs, 2)] = FMA(To, T1z, T1C); } { E T17, T18, T19, T1a; T17 = FMA(KP707106781, T10, TZ); T18 = Tl * T17; T19 = FNMS(KP707106781, T14, T13); T1a = Tl * T19; cr[WS(rs, 7)] = FNMS(Tp, T19, T18); ci[WS(rs, 7)] = FMA(Tp, T17, T1a); } { E T1l, T1d, T1m, T1c; T1l = T1h - T1k; T1c = T7 - Te; T1d = T1b * T1c; T1m = T1e * T1c; cr[WS(rs, 4)] = FNMS(T1e, T1l, T1d); ci[WS(rs, 4)] = FMA(T1b, T1l, T1m); } { E T1r, T1s, T1x, T1y; T1r = T1p - T1q; T1s = T1o * T1r; T1x = T1v - T1w; T1y = T1o * T1x; cr[WS(rs, 6)] = FNMS(T1u, T1x, T1s); ci[WS(rs, 6)] = FMA(T1u, T1r, T1y); } { E TT, TX, TW, TY, TI, TU, TS, TV, TH; TS = TQ - TR; TT = FNMS(KP707106781, TS, TP); TX = FMA(KP707106781, TS, TP); TV = FMA(KP707106781, TG, Tv); TW = Tf * TV; TY = Ti * TV; TH = FNMS(KP707106781, TG, Tv); TI = Tq * TH; TU = TK * TH; cr[WS(rs, 5)] = FNMS(TK, TT, TI); ci[WS(rs, 5)] = FMA(Tq, TT, TU); cr[WS(rs, 1)] = FNMS(Ti, TX, TW); ci[WS(rs, 1)] = FMA(Tf, TX, TY); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 7}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 8, "hb2_8", twinstr, &GENUS, {44, 20, 30, 0} }; void X(codelet_hb2_8) (planner *p) { X(khc2hc_register) (p, hb2_8, &desc); } #else /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hb2_8 -include rdft/scalar/hb.h */ /* * This function contains 74 FP additions, 44 FP multiplications, * (or, 56 additions, 26 multiplications, 18 fused multiply/add), * 46 stack variables, 1 constants, and 32 memory accesses */ #include "rdft/scalar/hb.h" static void hb2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) { E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT; { E Th, To, Tk, Tn; Tf = W[0]; Ti = W[1]; Tg = W[2]; Tj = W[3]; Th = Tf * Tg; To = Ti * Tg; Tk = Ti * Tj; Tn = Tf * Tj; Tl = Th - Tk; Tp = Tn + To; TP = Th + Tk; TR = Tn - To; TF = W[4]; TG = W[5]; TH = FMA(Tf, TF, Ti * TG); T15 = FNMS(TR, TF, TP * TG); TL = FNMS(Ti, TF, Tf * TG); TT = FMA(TP, TF, TR * TG); } { E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12; E TN, Tm, TE; { E T3, TU, Tv, TV, T6, T16, Ts, T17; { E T1, T2, Tt, Tu; T1 = cr[0]; T2 = ci[WS(rs, 3)]; T3 = T1 + T2; TU = T1 - T2; Tt = ci[WS(rs, 5)]; Tu = cr[WS(rs, 6)]; Tv = Tt - Tu; TV = Tt + Tu; } { E T4, T5, Tq, Tr; T4 = cr[WS(rs, 2)]; T5 = ci[WS(rs, 1)]; T6 = T4 + T5; T16 = T4 - T5; Tq = ci[WS(rs, 7)]; Tr = cr[WS(rs, 4)]; Ts = Tq - Tr; T17 = Tq + Tr; } T7 = T3 + T6; T1f = TU + TV; T1i = T17 - T16; Tw = Ts + Tv; TI = T3 - T6; TW = TU - TV; T18 = T16 + T17; TM = Ts - Tv; } { E Ta, TX, TC, T11, Td, T10, Tz, TY; { E T8, T9, TA, TB; T8 = cr[WS(rs, 1)]; T9 = ci[WS(rs, 2)]; Ta = T8 + T9; TX = T8 - T9; TA = ci[WS(rs, 4)]; TB = cr[WS(rs, 7)]; TC = TA - TB; T11 = TA + TB; } { E Tb, Tc, Tx, Ty; Tb = ci[0]; Tc = cr[WS(rs, 3)]; Td = Tb + Tc; T10 = Tb - Tc; Tx = ci[WS(rs, 6)]; Ty = cr[WS(rs, 5)]; Tz = Tx - Ty; TY = Tx + Ty; } Te = Ta + Td; T19 = TX + TY; T1a = T10 + T11; TD = Tz + TC; TJ = TC - Tz; TZ = TX - TY; T12 = T10 - T11; TN = Ta - Td; } cr[0] = T7 + Te; ci[0] = Tw + TD; Tm = T7 - Te; TE = Tw - TD; cr[WS(rs, 4)] = FNMS(Tp, TE, Tl * Tm); ci[WS(rs, 4)] = FMA(Tp, Tm, Tl * TE); { E TQ, TS, TK, TO; TQ = TI + TJ; TS = TN + TM; cr[WS(rs, 2)] = FNMS(TR, TS, TP * TQ); ci[WS(rs, 2)] = FMA(TP, TS, TR * TQ); TK = TI - TJ; TO = TM - TN; cr[WS(rs, 6)] = FNMS(TL, TO, TH * TK); ci[WS(rs, 6)] = FMA(TH, TO, TL * TK); } { E T1h, T1l, T1k, T1m, T1g, T1j; T1g = KP707106781 * (T19 + T1a); T1h = T1f - T1g; T1l = T1f + T1g; T1j = KP707106781 * (TZ - T12); T1k = T1i + T1j; T1m = T1i - T1j; cr[WS(rs, 3)] = FNMS(Tj, T1k, Tg * T1h); ci[WS(rs, 3)] = FMA(Tg, T1k, Tj * T1h); cr[WS(rs, 7)] = FNMS(TG, T1m, TF * T1l); ci[WS(rs, 7)] = FMA(TF, T1m, TG * T1l); } { E T14, T1d, T1c, T1e, T13, T1b; T13 = KP707106781 * (TZ + T12); T14 = TW - T13; T1d = TW + T13; T1b = KP707106781 * (T19 - T1a); T1c = T18 - T1b; T1e = T18 + T1b; cr[WS(rs, 5)] = FNMS(T15, T1c, TT * T14); ci[WS(rs, 5)] = FMA(T15, T14, TT * T1c); cr[WS(rs, 1)] = FNMS(Ti, T1e, Tf * T1d); ci[WS(rs, 1)] = FMA(Ti, T1d, Tf * T1e); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 7}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 8, "hb2_8", twinstr, &GENUS, {56, 26, 18, 0} }; void X(codelet_hb2_8) (planner *p) { X(khc2hc_register) (p, hb2_8, &desc); } #endif