/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:32 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hb_16 -include rdft/scalar/hb.h */ /* * This function contains 174 FP additions, 100 FP multiplications, * (or, 104 additions, 30 multiplications, 70 fused multiply/add), * 63 stack variables, 3 constants, and 64 memory accesses */ #include "rdft/scalar/hb.h" static void hb_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP414213562, +0.414213562373095048801688724209698078569671875); { INT m; for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { E TA, T1O, T21, T1h, T2P, T2S, T3b, T3p, T3q, T3D, T1k, T1P, Tf, T3y, T2A; E T36, TL, T22, T3s, T3t, T3z, T2F, T2U, T2K, T2V, Tu, T3E, TX, T1n, T1T; E T24, T1W, T25, T18, T1m; { E T3, Tw, TJ, T2x, T1g, T2Q, T6, T1d, Ta, TB, Tz, T2R, TE, T2y, Td; E TG; { E T1, T2, TH, TI; T1 = cr[0]; T2 = ci[WS(rs, 7)]; T3 = T1 + T2; Tw = T1 - T2; TH = ci[WS(rs, 9)]; TI = cr[WS(rs, 14)]; TJ = TH + TI; T2x = TH - TI; } { E T1e, T1f, T4, T5; T1e = ci[WS(rs, 15)]; T1f = cr[WS(rs, 8)]; T1g = T1e + T1f; T2Q = T1e - T1f; T4 = cr[WS(rs, 4)]; T5 = ci[WS(rs, 3)]; T6 = T4 + T5; T1d = T4 - T5; } { E T8, T9, Tx, Ty; T8 = cr[WS(rs, 2)]; T9 = ci[WS(rs, 5)]; Ta = T8 + T9; TB = T8 - T9; Tx = ci[WS(rs, 11)]; Ty = cr[WS(rs, 12)]; Tz = Tx + Ty; T2R = Tx - Ty; } { E TC, TD, Tb, Tc; TC = ci[WS(rs, 13)]; TD = cr[WS(rs, 10)]; TE = TC + TD; T2y = TC - TD; Tb = ci[WS(rs, 1)]; Tc = cr[WS(rs, 6)]; Td = Tb + Tc; TG = Tb - Tc; } TA = Tw - Tz; T1O = Tw + Tz; T21 = T1g - T1d; T1h = T1d + T1g; T2P = Ta - Td; T2S = T2Q - T2R; T3b = T2S - T2P; { E T1i, T1j, T7, Te; T3p = T2Q + T2R; T3q = T2y + T2x; T3D = T3p - T3q; T1i = TB + TE; T1j = TG + TJ; T1k = T1i - T1j; T1P = T1i + T1j; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; T3y = T7 - Te; { E T2w, T2z, TF, TK; T2w = T3 - T6; T2z = T2x - T2y; T2A = T2w + T2z; T36 = T2w - T2z; TF = TB - TE; TK = TG - TJ; TL = TF + TK; T22 = TF - TK; } } } { E Ti, T13, T11, T2C, T16, T2D, Tl, TY, Tp, TS, TQ, T2H, TV, T2I, Ts; E TN, T2B, T2E; { E Tg, Th, TZ, T10; Tg = cr[WS(rs, 1)]; Th = ci[WS(rs, 6)]; Ti = Tg + Th; T13 = Tg - Th; TZ = ci[WS(rs, 14)]; T10 = cr[WS(rs, 9)]; T11 = TZ + T10; T2C = TZ - T10; } { E T14, T15, Tj, Tk; T14 = ci[WS(rs, 10)]; T15 = cr[WS(rs, 13)]; T16 = T14 + T15; T2D = T14 - T15; Tj = cr[WS(rs, 5)]; Tk = ci[WS(rs, 2)]; Tl = Tj + Tk; TY = Tj - Tk; } { E Tn, To, TO, TP; Tn = ci[0]; To = cr[WS(rs, 7)]; Tp = Tn + To; TS = Tn - To; TO = ci[WS(rs, 8)]; TP = cr[WS(rs, 15)]; TQ = TO + TP; T2H = TO - TP; } { E TT, TU, Tq, Tr; TT = ci[WS(rs, 12)]; TU = cr[WS(rs, 11)]; TV = TT + TU; T2I = TT - TU; Tq = cr[WS(rs, 3)]; Tr = ci[WS(rs, 4)]; Ts = Tq + Tr; TN = Tq - Tr; } T3s = T2C + T2D; T3t = T2H + T2I; T3z = T3t - T3s; T2B = Ti - Tl; T2E = T2C - T2D; T2F = T2B - T2E; T2U = T2B + T2E; { E T2G, T2J, Tm, Tt; T2G = Tp - Ts; T2J = T2H - T2I; T2K = T2G + T2J; T2V = T2J - T2G; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; T3E = Tm - Tt; } { E TR, TW, T1R, T1S; TR = TN - TQ; TW = TS - TV; TX = FNMS(KP414213562, TW, TR); T1n = FMA(KP414213562, TR, TW); T1R = T11 - TY; T1S = T13 + T16; T1T = FNMS(KP414213562, T1S, T1R); T24 = FMA(KP414213562, T1R, T1S); } { E T1U, T1V, T12, T17; T1U = TN + TQ; T1V = TS + TV; T1W = FNMS(KP414213562, T1V, T1U); T25 = FMA(KP414213562, T1U, T1V); T12 = TY + T11; T17 = T13 - T16; T18 = FMA(KP414213562, T17, T12); T1m = FNMS(KP414213562, T12, T17); } } cr[0] = Tf + Tu; { E T3r, T3u, T3v, T3l, T3n, T3o, T3w, T3m; T3r = T3p + T3q; T3u = T3s + T3t; T3v = T3r - T3u; T3m = Tf - Tu; T3l = W[14]; T3n = T3l * T3m; T3o = W[15]; T3w = T3o * T3m; ci[0] = T3r + T3u; ci[WS(rs, 8)] = FMA(T3l, T3v, T3w); cr[WS(rs, 8)] = FNMS(T3o, T3v, T3n); } { E T3A, T3F, T3B, T3G, T3x, T3C; T3A = T3y - T3z; T3F = T3D - T3E; T3x = W[22]; T3B = T3x * T3A; T3G = T3x * T3F; T3C = W[23]; cr[WS(rs, 12)] = FNMS(T3C, T3F, T3B); ci[WS(rs, 12)] = FMA(T3C, T3A, T3G); } { E T3I, T3L, T3J, T3M, T3H, T3K; T3I = T3y + T3z; T3L = T3E + T3D; T3H = W[6]; T3J = T3H * T3I; T3M = T3H * T3L; T3K = W[7]; cr[WS(rs, 4)] = FNMS(T3K, T3L, T3J); ci[WS(rs, 4)] = FMA(T3K, T3I, T3M); } { E T38, T3g, T3d, T3j, T37, T3c; T37 = T2V - T2U; T38 = FNMS(KP707106781, T37, T36); T3g = FMA(KP707106781, T37, T36); T3c = T2F - T2K; T3d = FNMS(KP707106781, T3c, T3b); T3j = FMA(KP707106781, T3c, T3b); { E T39, T3e, T35, T3a; T35 = W[26]; T39 = T35 * T38; T3e = T35 * T3d; T3a = W[27]; cr[WS(rs, 14)] = FNMS(T3a, T3d, T39); ci[WS(rs, 14)] = FMA(T3a, T38, T3e); } { E T3h, T3k, T3f, T3i; T3f = W[10]; T3h = T3f * T3g; T3k = T3f * T3j; T3i = W[11]; cr[WS(rs, 6)] = FNMS(T3i, T3j, T3h); ci[WS(rs, 6)] = FMA(T3i, T3g, T3k); } } { E T2M, T30, T2X, T33, T2L, T2T, T2W; T2L = T2F + T2K; T2M = FNMS(KP707106781, T2L, T2A); T30 = FMA(KP707106781, T2L, T2A); T2T = T2P + T2S; T2W = T2U + T2V; T2X = FNMS(KP707106781, T2W, T2T); T33 = FMA(KP707106781, T2W, T2T); { E T2v, T2N, T2O, T2Y; T2v = W[18]; T2N = T2v * T2M; T2O = W[19]; T2Y = T2O * T2M; cr[WS(rs, 10)] = FNMS(T2O, T2X, T2N); ci[WS(rs, 10)] = FMA(T2v, T2X, T2Y); } { E T2Z, T31, T32, T34; T2Z = W[2]; T31 = T2Z * T30; T32 = W[3]; T34 = T32 * T30; cr[WS(rs, 2)] = FNMS(T32, T33, T31); ci[WS(rs, 2)] = FMA(T2Z, T33, T34); } } { E T1Y, T2a, T27, T2d; { E T1Q, T1X, T23, T26; T1Q = FNMS(KP707106781, T1P, T1O); T1X = T1T + T1W; T1Y = FMA(KP923879532, T1X, T1Q); T2a = FNMS(KP923879532, T1X, T1Q); T23 = FMA(KP707106781, T22, T21); T26 = T24 - T25; T27 = FNMS(KP923879532, T26, T23); T2d = FMA(KP923879532, T26, T23); } { E T1N, T1Z, T20, T28; T1N = W[20]; T1Z = T1N * T1Y; T20 = W[21]; T28 = T20 * T1Y; cr[WS(rs, 11)] = FNMS(T20, T27, T1Z); ci[WS(rs, 11)] = FMA(T1N, T27, T28); } { E T29, T2b, T2c, T2e; T29 = W[4]; T2b = T29 * T2a; T2c = W[5]; T2e = T2c * T2a; cr[WS(rs, 3)] = FNMS(T2c, T2d, T2b); ci[WS(rs, 3)] = FMA(T29, T2d, T2e); } } { E T1a, T1s, T1p, T1v; { E TM, T19, T1l, T1o; TM = FNMS(KP707106781, TL, TA); T19 = TX - T18; T1a = FNMS(KP923879532, T19, TM); T1s = FMA(KP923879532, T19, TM); T1l = FNMS(KP707106781, T1k, T1h); T1o = T1m - T1n; T1p = FNMS(KP923879532, T1o, T1l); T1v = FMA(KP923879532, T1o, T1l); } { E Tv, T1b, T1c, T1q; Tv = W[24]; T1b = Tv * T1a; T1c = W[25]; T1q = T1c * T1a; cr[WS(rs, 13)] = FNMS(T1c, T1p, T1b); ci[WS(rs, 13)] = FMA(Tv, T1p, T1q); } { E T1r, T1t, T1u, T1w; T1r = W[8]; T1t = T1r * T1s; T1u = W[9]; T1w = T1u * T1s; cr[WS(rs, 5)] = FNMS(T1u, T1v, T1t); ci[WS(rs, 5)] = FMA(T1r, T1v, T1w); } } { E T2i, T2q, T2n, T2t; { E T2g, T2h, T2l, T2m; T2g = FMA(KP707106781, T1P, T1O); T2h = T24 + T25; T2i = FNMS(KP923879532, T2h, T2g); T2q = FMA(KP923879532, T2h, T2g); T2l = FNMS(KP707106781, T22, T21); T2m = T1W - T1T; T2n = FMA(KP923879532, T2m, T2l); T2t = FNMS(KP923879532, T2m, T2l); } { E T2j, T2o, T2f, T2k; T2f = W[12]; T2j = T2f * T2i; T2o = T2f * T2n; T2k = W[13]; cr[WS(rs, 7)] = FNMS(T2k, T2n, T2j); ci[WS(rs, 7)] = FMA(T2k, T2i, T2o); } { E T2r, T2u, T2p, T2s; T2p = W[28]; T2r = T2p * T2q; T2u = T2p * T2t; T2s = W[29]; cr[WS(rs, 15)] = FNMS(T2s, T2t, T2r); ci[WS(rs, 15)] = FMA(T2s, T2q, T2u); } } { E T1A, T1I, T1F, T1L; { E T1y, T1z, T1D, T1E; T1y = FMA(KP707106781, TL, TA); T1z = T1m + T1n; T1A = FNMS(KP923879532, T1z, T1y); T1I = FMA(KP923879532, T1z, T1y); T1D = FMA(KP707106781, T1k, T1h); T1E = T18 + TX; T1F = FNMS(KP923879532, T1E, T1D); T1L = FMA(KP923879532, T1E, T1D); } { E T1B, T1G, T1x, T1C; T1x = W[16]; T1B = T1x * T1A; T1G = T1x * T1F; T1C = W[17]; cr[WS(rs, 9)] = FNMS(T1C, T1F, T1B); ci[WS(rs, 9)] = FMA(T1C, T1A, T1G); } { E T1J, T1M, T1H, T1K; T1H = W[0]; T1J = T1H * T1I; T1M = T1H * T1L; T1K = W[1]; cr[WS(rs, 1)] = FNMS(T1K, T1L, T1J); ci[WS(rs, 1)] = FMA(T1K, T1I, T1M); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 16}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 16, "hb_16", twinstr, &GENUS, {104, 30, 70, 0} }; void X(codelet_hb_16) (planner *p) { X(khc2hc_register) (p, hb_16, &desc); } #else /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hb_16 -include rdft/scalar/hb.h */ /* * This function contains 174 FP additions, 84 FP multiplications, * (or, 136 additions, 46 multiplications, 38 fused multiply/add), * 50 stack variables, 3 constants, and 64 memory accesses */ #include "rdft/scalar/hb.h" static void hb_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { E T7, T2K, T2W, Tw, T17, T1S, T2k, T1w, Te, TD, T1x, T10, T2n, T2L, T1Z; E T2X, Tm, T1z, TN, T19, T2e, T2p, T2P, T2Z, Tt, T1A, TW, T1a, T27, T2q; E T2S, T30; { E T3, T1Q, T16, T1R, T6, T2i, T13, T2j; { E T1, T2, T14, T15; T1 = cr[0]; T2 = ci[WS(rs, 7)]; T3 = T1 + T2; T1Q = T1 - T2; T14 = ci[WS(rs, 11)]; T15 = cr[WS(rs, 12)]; T16 = T14 - T15; T1R = T14 + T15; } { E T4, T5, T11, T12; T4 = cr[WS(rs, 4)]; T5 = ci[WS(rs, 3)]; T6 = T4 + T5; T2i = T4 - T5; T11 = ci[WS(rs, 15)]; T12 = cr[WS(rs, 8)]; T13 = T11 - T12; T2j = T11 + T12; } T7 = T3 + T6; T2K = T1Q + T1R; T2W = T2j - T2i; Tw = T3 - T6; T17 = T13 - T16; T1S = T1Q - T1R; T2k = T2i + T2j; T1w = T13 + T16; } { E Ta, T1T, TC, T1U, Td, T1W, Tz, T1X; { E T8, T9, TA, TB; T8 = cr[WS(rs, 2)]; T9 = ci[WS(rs, 5)]; Ta = T8 + T9; T1T = T8 - T9; TA = ci[WS(rs, 13)]; TB = cr[WS(rs, 10)]; TC = TA - TB; T1U = TA + TB; } { E Tb, Tc, Tx, Ty; Tb = ci[WS(rs, 1)]; Tc = cr[WS(rs, 6)]; Td = Tb + Tc; T1W = Tb - Tc; Tx = ci[WS(rs, 9)]; Ty = cr[WS(rs, 14)]; Tz = Tx - Ty; T1X = Tx + Ty; } Te = Ta + Td; TD = Tz - TC; T1x = TC + Tz; T10 = Ta - Td; { E T2l, T2m, T1V, T1Y; T2l = T1T + T1U; T2m = T1W + T1X; T2n = KP707106781 * (T2l - T2m); T2L = KP707106781 * (T2l + T2m); T1V = T1T - T1U; T1Y = T1W - T1X; T1Z = KP707106781 * (T1V + T1Y); T2X = KP707106781 * (T1V - T1Y); } } { E Ti, T2b, TL, T2c, Tl, T28, TI, T29, TF, TM; { E Tg, Th, TJ, TK; Tg = cr[WS(rs, 1)]; Th = ci[WS(rs, 6)]; Ti = Tg + Th; T2b = Tg - Th; TJ = ci[WS(rs, 10)]; TK = cr[WS(rs, 13)]; TL = TJ - TK; T2c = TJ + TK; } { E Tj, Tk, TG, TH; Tj = cr[WS(rs, 5)]; Tk = ci[WS(rs, 2)]; Tl = Tj + Tk; T28 = Tj - Tk; TG = ci[WS(rs, 14)]; TH = cr[WS(rs, 9)]; TI = TG - TH; T29 = TG + TH; } Tm = Ti + Tl; T1z = TI + TL; TF = Ti - Tl; TM = TI - TL; TN = TF - TM; T19 = TF + TM; { E T2a, T2d, T2N, T2O; T2a = T28 + T29; T2d = T2b - T2c; T2e = FMA(KP923879532, T2a, KP382683432 * T2d); T2p = FNMS(KP382683432, T2a, KP923879532 * T2d); T2N = T2b + T2c; T2O = T29 - T28; T2P = FNMS(KP923879532, T2O, KP382683432 * T2N); T2Z = FMA(KP382683432, T2O, KP923879532 * T2N); } } { E Tp, T24, TU, T25, Ts, T21, TR, T22, TO, TV; { E Tn, To, TS, TT; Tn = ci[0]; To = cr[WS(rs, 7)]; Tp = Tn + To; T24 = Tn - To; TS = ci[WS(rs, 12)]; TT = cr[WS(rs, 11)]; TU = TS - TT; T25 = TS + TT; } { E Tq, Tr, TP, TQ; Tq = cr[WS(rs, 3)]; Tr = ci[WS(rs, 4)]; Ts = Tq + Tr; T21 = Tq - Tr; TP = ci[WS(rs, 8)]; TQ = cr[WS(rs, 15)]; TR = TP - TQ; T22 = TP + TQ; } Tt = Tp + Ts; T1A = TR + TU; TO = Tp - Ts; TV = TR - TU; TW = TO + TV; T1a = TV - TO; { E T23, T26, T2Q, T2R; T23 = T21 - T22; T26 = T24 - T25; T27 = FNMS(KP382683432, T26, KP923879532 * T23); T2q = FMA(KP382683432, T23, KP923879532 * T26); T2Q = T24 + T25; T2R = T21 + T22; T2S = FNMS(KP923879532, T2R, KP382683432 * T2Q); T30 = FMA(KP382683432, T2R, KP923879532 * T2Q); } } { E Tf, Tu, T1u, T1y, T1B, T1C, T1t, T1v; Tf = T7 + Te; Tu = Tm + Tt; T1u = Tf - Tu; T1y = T1w + T1x; T1B = T1z + T1A; T1C = T1y - T1B; cr[0] = Tf + Tu; ci[0] = T1y + T1B; T1t = W[14]; T1v = W[15]; cr[WS(rs, 8)] = FNMS(T1v, T1C, T1t * T1u); ci[WS(rs, 8)] = FMA(T1v, T1u, T1t * T1C); } { E T2U, T34, T32, T36; { E T2M, T2T, T2Y, T31; T2M = T2K - T2L; T2T = T2P + T2S; T2U = T2M - T2T; T34 = T2M + T2T; T2Y = T2W + T2X; T31 = T2Z - T30; T32 = T2Y - T31; T36 = T2Y + T31; } { E T2J, T2V, T33, T35; T2J = W[20]; T2V = W[21]; cr[WS(rs, 11)] = FNMS(T2V, T32, T2J * T2U); ci[WS(rs, 11)] = FMA(T2V, T2U, T2J * T32); T33 = W[4]; T35 = W[5]; cr[WS(rs, 3)] = FNMS(T35, T36, T33 * T34); ci[WS(rs, 3)] = FMA(T35, T34, T33 * T36); } } { E T3a, T3g, T3e, T3i; { E T38, T39, T3c, T3d; T38 = T2K + T2L; T39 = T2Z + T30; T3a = T38 - T39; T3g = T38 + T39; T3c = T2W - T2X; T3d = T2P - T2S; T3e = T3c + T3d; T3i = T3c - T3d; } { E T37, T3b, T3f, T3h; T37 = W[12]; T3b = W[13]; cr[WS(rs, 7)] = FNMS(T3b, T3e, T37 * T3a); ci[WS(rs, 7)] = FMA(T37, T3e, T3b * T3a); T3f = W[28]; T3h = W[29]; cr[WS(rs, 15)] = FNMS(T3h, T3i, T3f * T3g); ci[WS(rs, 15)] = FMA(T3f, T3i, T3h * T3g); } } { E TY, T1e, T1c, T1g; { E TE, TX, T18, T1b; TE = Tw + TD; TX = KP707106781 * (TN + TW); TY = TE - TX; T1e = TE + TX; T18 = T10 + T17; T1b = KP707106781 * (T19 + T1a); T1c = T18 - T1b; T1g = T18 + T1b; } { E Tv, TZ, T1d, T1f; Tv = W[18]; TZ = W[19]; cr[WS(rs, 10)] = FNMS(TZ, T1c, Tv * TY); ci[WS(rs, 10)] = FMA(TZ, TY, Tv * T1c); T1d = W[2]; T1f = W[3]; cr[WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e); ci[WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g); } } { E T1k, T1q, T1o, T1s; { E T1i, T1j, T1m, T1n; T1i = Tw - TD; T1j = KP707106781 * (T1a - T19); T1k = T1i - T1j; T1q = T1i + T1j; T1m = T17 - T10; T1n = KP707106781 * (TN - TW); T1o = T1m - T1n; T1s = T1m + T1n; } { E T1h, T1l, T1p, T1r; T1h = W[26]; T1l = W[27]; cr[WS(rs, 14)] = FNMS(T1l, T1o, T1h * T1k); ci[WS(rs, 14)] = FMA(T1h, T1o, T1l * T1k); T1p = W[10]; T1r = W[11]; cr[WS(rs, 6)] = FNMS(T1r, T1s, T1p * T1q); ci[WS(rs, 6)] = FMA(T1p, T1s, T1r * T1q); } } { E T2g, T2u, T2s, T2w; { E T20, T2f, T2o, T2r; T20 = T1S - T1Z; T2f = T27 - T2e; T2g = T20 - T2f; T2u = T20 + T2f; T2o = T2k - T2n; T2r = T2p - T2q; T2s = T2o - T2r; T2w = T2o + T2r; } { E T1P, T2h, T2t, T2v; T1P = W[24]; T2h = W[25]; cr[WS(rs, 13)] = FNMS(T2h, T2s, T1P * T2g); ci[WS(rs, 13)] = FMA(T2h, T2g, T1P * T2s); T2t = W[8]; T2v = W[9]; cr[WS(rs, 5)] = FNMS(T2v, T2w, T2t * T2u); ci[WS(rs, 5)] = FMA(T2v, T2u, T2t * T2w); } } { E T2A, T2G, T2E, T2I; { E T2y, T2z, T2C, T2D; T2y = T1S + T1Z; T2z = T2p + T2q; T2A = T2y - T2z; T2G = T2y + T2z; T2C = T2k + T2n; T2D = T2e + T27; T2E = T2C - T2D; T2I = T2C + T2D; } { E T2x, T2B, T2F, T2H; T2x = W[16]; T2B = W[17]; cr[WS(rs, 9)] = FNMS(T2B, T2E, T2x * T2A); ci[WS(rs, 9)] = FMA(T2x, T2E, T2B * T2A); T2F = W[0]; T2H = W[1]; cr[WS(rs, 1)] = FNMS(T2H, T2I, T2F * T2G); ci[WS(rs, 1)] = FMA(T2F, T2I, T2H * T2G); } } { E T1G, T1M, T1K, T1O; { E T1E, T1F, T1I, T1J; T1E = T7 - Te; T1F = T1A - T1z; T1G = T1E - T1F; T1M = T1E + T1F; T1I = T1w - T1x; T1J = Tm - Tt; T1K = T1I - T1J; T1O = T1J + T1I; } { E T1D, T1H, T1L, T1N; T1D = W[22]; T1H = W[23]; cr[WS(rs, 12)] = FNMS(T1H, T1K, T1D * T1G); ci[WS(rs, 12)] = FMA(T1D, T1K, T1H * T1G); T1L = W[6]; T1N = W[7]; cr[WS(rs, 4)] = FNMS(T1N, T1O, T1L * T1M); ci[WS(rs, 4)] = FMA(T1L, T1O, T1N * T1M); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 16}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 16, "hb_16", twinstr, &GENUS, {136, 46, 38, 0} }; void X(codelet_hb_16) (planner *p) { X(khc2hc_register) (p, hb_16, &desc); } #endif