/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:33 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 64 -dif -name hb_64 -include rdft/scalar/hb.h */ /* * This function contains 1038 FP additions, 644 FP multiplications, * (or, 520 additions, 126 multiplications, 518 fused multiply/add), * 192 stack variables, 15 constants, and 256 memory accesses */ #include "rdft/scalar/hb.h" static void hb_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP534511135, +0.534511135950791641089685961295362908582039528); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP303346683, +0.303346683607342391675883946941299872384187453); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP098491403, +0.098491403357164253077197521291327432293052451); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP820678790, +0.820678790828660330972281985331011598767386482); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { E Tv, Thy, T5B, T7n, Tey, TfP, TjB, Tkl, T2k, T6U, T2H, T7o, Tia, TiH, Tj8; E Tk8, T5E, T6V, T9N, Tbz, T9Q, Tb7, Tev, Tgh, T8G, Tb6, T8N, TbA, TcU, TfO; E Td5, Tgi, T10, Ti3, Tje, TjC, ThF, TiI, Tds, TeA, Tjb, TjD, Tdh, TeB, TfT; E Tgl, TfW, Tgk, T39, T7r, T5H, T6Z, T8V, TbC, T9S, Tbb, T3A, T7q, T5G, T72; E T92, TbD, T9T, Tbe, T1w, ThH, Tjq, Tke, Tjt, Tkf, ThO, TiK, Tec, TgT, Tfc; E Tgb, Tel, TgU, Tfd, Tg8, T5a, T82, T83, T5n, T6i, T77, T7a, T6j, T9f, Tcb; E Tcc, T9m, Tar, Tbj, Tbm, Tas, T21, ThQ, Tjj, Tkb, Tjm, Tkc, ThX, TiL, TdL; E TgW, Tf9, Tg4, TdU, TgX, Tfa, Tg1, T4h, T7Z, T80, T4u, T6f, T7e, T7h, T6g; E T9y, Tce, Tcf, T9F, Tau, Tbq, Tbt, Tav; { E T3, T6, T7, T5t, T24, Tes, Ter, T27, Ti4, T5w, Ta, TcR, Td, TcS, Te; E T2d, Ti5, T5z, T5y, T2i, Tm, Td3, Ti7, T2p, T2u, T8I, Td0, T8H, Tt, TcY; E Ti8, T2A, T2F, T8L, TcX, T8K; { E T1, T2, T4, T5; T1 = cr[0]; T2 = ci[WS(rs, 31)]; T3 = T1 + T2; T4 = cr[WS(rs, 16)]; T5 = ci[WS(rs, 15)]; T6 = T4 + T5; T7 = T3 + T6; T5t = T4 - T5; T24 = T1 - T2; } { E T25, T26, T5u, T5v; T25 = ci[WS(rs, 47)]; T26 = cr[WS(rs, 48)]; Tes = T25 - T26; T5u = ci[WS(rs, 63)]; T5v = cr[WS(rs, 32)]; Ter = T5u - T5v; T27 = T25 + T26; Ti4 = Ter + Tes; T5w = T5u + T5v; } { E T29, T2h, T2e, T2c; { E T8, T9, T2f, T2g; T8 = cr[WS(rs, 8)]; T9 = ci[WS(rs, 23)]; Ta = T8 + T9; T29 = T8 - T9; T2f = ci[WS(rs, 39)]; T2g = cr[WS(rs, 56)]; T2h = T2f + T2g; TcR = T2f - T2g; } { E Tb, Tc, T2a, T2b; Tb = ci[WS(rs, 7)]; Tc = cr[WS(rs, 24)]; Td = Tb + Tc; T2e = Tb - Tc; T2a = ci[WS(rs, 55)]; T2b = cr[WS(rs, 40)]; T2c = T2a + T2b; TcS = T2a - T2b; } Te = Ta + Td; T2d = T29 - T2c; Ti5 = TcS + TcR; T5z = T2e + T2h; T5y = T29 + T2c; T2i = T2e - T2h; } { E Ti, T2l, T2t, Td1, Tl, T2q, T2o, Td2; { E Tg, Th, T2r, T2s; Tg = cr[WS(rs, 4)]; Th = ci[WS(rs, 27)]; Ti = Tg + Th; T2l = Tg - Th; T2r = ci[WS(rs, 59)]; T2s = cr[WS(rs, 36)]; T2t = T2r + T2s; Td1 = T2r - T2s; } { E Tj, Tk, T2m, T2n; Tj = cr[WS(rs, 20)]; Tk = ci[WS(rs, 11)]; Tl = Tj + Tk; T2q = Tj - Tk; T2m = ci[WS(rs, 43)]; T2n = cr[WS(rs, 52)]; T2o = T2m + T2n; Td2 = T2m - T2n; } Tm = Ti + Tl; Td3 = Td1 - Td2; Ti7 = Td1 + Td2; T2p = T2l - T2o; T2u = T2q + T2t; T8I = T2l + T2o; Td0 = Ti - Tl; T8H = T2t - T2q; } { E Tp, T2w, T2E, TcV, Ts, T2B, T2z, TcW; { E Tn, To, T2C, T2D; Tn = ci[WS(rs, 3)]; To = cr[WS(rs, 28)]; Tp = Tn + To; T2w = Tn - To; T2C = ci[WS(rs, 35)]; T2D = cr[WS(rs, 60)]; T2E = T2C + T2D; TcV = T2C - T2D; } { E Tq, Tr, T2x, T2y; Tq = cr[WS(rs, 12)]; Tr = ci[WS(rs, 19)]; Ts = Tq + Tr; T2B = Tq - Tr; T2x = ci[WS(rs, 51)]; T2y = cr[WS(rs, 44)]; T2z = T2x + T2y; TcW = T2x - T2y; } Tt = Tp + Ts; TcY = Tp - Ts; Ti8 = TcV + TcW; T2A = T2w - T2z; T2F = T2B - T2E; T8L = T2w + T2z; TcX = TcV - TcW; T8K = T2B + T2E; } { E Tf, Tu, T5x, T5A; Tf = T7 + Te; Tu = Tm + Tt; Tv = Tf + Tu; Thy = Tf - Tu; T5x = T5t + T5w; T5A = T5y - T5z; T5B = FMA(KP707106781, T5A, T5x); T7n = FNMS(KP707106781, T5A, T5x); } { E Tew, Tex, Tjz, TjA; Tew = Td0 - Td3; Tex = TcY + TcX; Tey = Tew - Tex; TfP = Tew + Tex; Tjz = Ti4 - Ti5; TjA = Tm - Tt; TjB = Tjz - TjA; Tkl = TjA + Tjz; } { E T28, T2j, T2v, T2G; T28 = T24 - T27; T2j = T2d + T2i; T2k = FMA(KP707106781, T2j, T28); T6U = FNMS(KP707106781, T2j, T28); T2v = FNMS(KP414213562, T2u, T2p); T2G = FMA(KP414213562, T2F, T2A); T2H = T2v + T2G; T7o = T2v - T2G; } { E Ti6, Ti9, Tj6, Tj7; Ti6 = Ti4 + Ti5; Ti9 = Ti7 + Ti8; Tia = Ti6 - Ti9; TiH = Ti6 + Ti9; Tj6 = T7 - Te; Tj7 = Ti8 - Ti7; Tj8 = Tj6 - Tj7; Tk8 = Tj6 + Tj7; } { E T5C, T5D, T9L, T9M; T5C = FMA(KP414213562, T2p, T2u); T5D = FNMS(KP414213562, T2A, T2F); T5E = T5C + T5D; T6V = T5D - T5C; T9L = T5w - T5t; T9M = T2d - T2i; T9N = FMA(KP707106781, T9M, T9L); Tbz = FNMS(KP707106781, T9M, T9L); } { E T9O, T9P, Tet, Teu; T9O = FMA(KP414213562, T8H, T8I); T9P = FMA(KP414213562, T8K, T8L); T9Q = T9O - T9P; Tb7 = T9O + T9P; Tet = Ter - Tes; Teu = Ta - Td; Tev = Tet - Teu; Tgh = Teu + Tet; } { E T8E, T8F, T8J, T8M; T8E = T24 + T27; T8F = T5y + T5z; T8G = FNMS(KP707106781, T8F, T8E); Tb6 = FMA(KP707106781, T8F, T8E); T8J = FNMS(KP414213562, T8I, T8H); T8M = FNMS(KP414213562, T8L, T8K); T8N = T8J + T8M; TbA = T8M - T8J; } { E TcQ, TcT, TcZ, Td4; TcQ = T3 - T6; TcT = TcR - TcS; TcU = TcQ - TcT; TfO = TcQ + TcT; TcZ = TcX - TcY; Td4 = Td0 + Td3; Td5 = TcZ - Td4; Tgi = Td4 + TcZ; } } { E TC, Tdn, ThC, T3e, T3v, T8S, Tdk, T8P, TY, Tdf, ThA, T2S, T2X, T36, Tda; E T35, TJ, Tdq, ThD, T3j, T3o, T3x, Tdl, T3w, TR, Tdc, Thz, T2N, T34, T8Z; E Td9, T8W; { E Ty, T3r, T3u, Tdj, TB, T3a, T3d, Tdi; { E Tw, Tx, T3s, T3t; Tw = cr[WS(rs, 2)]; Tx = ci[WS(rs, 29)]; Ty = Tw + Tx; T3r = Tw - Tx; T3s = ci[WS(rs, 45)]; T3t = cr[WS(rs, 50)]; T3u = T3s + T3t; Tdj = T3s - T3t; } { E Tz, TA, T3b, T3c; Tz = cr[WS(rs, 18)]; TA = ci[WS(rs, 13)]; TB = Tz + TA; T3a = Tz - TA; T3b = ci[WS(rs, 61)]; T3c = cr[WS(rs, 34)]; T3d = T3b + T3c; Tdi = T3b - T3c; } TC = Ty + TB; Tdn = Ty - TB; ThC = Tdi + Tdj; T3e = T3a + T3d; T3v = T3r - T3u; T8S = T3r + T3u; Tdk = Tdi - Tdj; T8P = T3d - T3a; } { E TU, T2O, T2W, Tdd, TX, T2T, T2R, Tde; { E TS, TT, T2U, T2V; TS = cr[WS(rs, 6)]; TT = ci[WS(rs, 25)]; TU = TS + TT; T2O = TS - TT; T2U = ci[WS(rs, 41)]; T2V = cr[WS(rs, 54)]; T2W = T2U + T2V; Tdd = T2U - T2V; } { E TV, TW, T2P, T2Q; TV = ci[WS(rs, 9)]; TW = cr[WS(rs, 22)]; TX = TV + TW; T2T = TV - TW; T2P = ci[WS(rs, 57)]; T2Q = cr[WS(rs, 38)]; T2R = T2P + T2Q; Tde = T2P - T2Q; } TY = TU + TX; Tdf = Tdd - Tde; ThA = Tde + Tdd; T2S = T2O + T2R; T2X = T2T + T2W; T36 = T2T - T2W; Tda = TU - TX; T35 = T2O - T2R; } { E TF, T3f, T3n, Tdo, TI, T3k, T3i, Tdp; { E TD, TE, T3l, T3m; TD = cr[WS(rs, 10)]; TE = ci[WS(rs, 21)]; TF = TD + TE; T3f = TD - TE; T3l = ci[WS(rs, 37)]; T3m = cr[WS(rs, 58)]; T3n = T3l + T3m; Tdo = T3l - T3m; } { E TG, TH, T3g, T3h; TG = ci[WS(rs, 5)]; TH = cr[WS(rs, 26)]; TI = TG + TH; T3k = TG - TH; T3g = ci[WS(rs, 53)]; T3h = cr[WS(rs, 42)]; T3i = T3g + T3h; Tdp = T3g - T3h; } TJ = TF + TI; Tdq = Tdo - Tdp; ThD = Tdp + Tdo; T3j = T3f + T3i; T3o = T3k + T3n; T3x = T3k - T3n; Tdl = TF - TI; T3w = T3f - T3i; } { E TN, T30, T33, Td8, TQ, T2J, T2M, Td7; { E TL, TM, T31, T32; TL = ci[WS(rs, 1)]; TM = cr[WS(rs, 30)]; TN = TL + TM; T30 = TL - TM; T31 = ci[WS(rs, 49)]; T32 = cr[WS(rs, 46)]; T33 = T31 + T32; Td8 = T31 - T32; } { E TO, TP, T2K, T2L; TO = cr[WS(rs, 14)]; TP = ci[WS(rs, 17)]; TQ = TO + TP; T2J = TO - TP; T2K = ci[WS(rs, 33)]; T2L = cr[WS(rs, 62)]; T2M = T2K + T2L; Td7 = T2K - T2L; } TR = TN + TQ; Tdc = TN - TQ; Thz = Td7 + Td8; T2N = T2J - T2M; T34 = T30 - T33; T8Z = T30 + T33; Td9 = Td7 - Td8; T8W = T2J + T2M; } { E TK, TZ, Tdm, Tdr; TK = TC + TJ; TZ = TR + TY; T10 = TK + TZ; Ti3 = TK - TZ; { E Tjc, Tjd, ThB, ThE; Tjc = TC - TJ; Tjd = ThC - ThD; Tje = Tjc + Tjd; TjC = Tjc - Tjd; ThB = Thz + ThA; ThE = ThC + ThD; ThF = ThB - ThE; TiI = ThE + ThB; } Tdm = Tdk - Tdl; Tdr = Tdn - Tdq; Tds = FNMS(KP414213562, Tdr, Tdm); TeA = FMA(KP414213562, Tdm, Tdr); { E Tj9, Tja, Tdb, Tdg; Tj9 = Thz - ThA; Tja = TR - TY; Tjb = Tj9 - Tja; TjD = Tja + Tj9; Tdb = Td9 - Tda; Tdg = Tdc - Tdf; Tdh = FMA(KP414213562, Tdg, Tdb); TeB = FNMS(KP414213562, Tdb, Tdg); } } { E TfR, TfS, TfU, TfV; TfR = Tda + Td9; TfS = Tdc + Tdf; TfT = FNMS(KP414213562, TfS, TfR); Tgl = FMA(KP414213562, TfR, TfS); TfU = Tdl + Tdk; TfV = Tdn + Tdq; TfW = FMA(KP414213562, TfV, TfU); Tgk = FNMS(KP414213562, TfU, TfV); { E T2Z, T6X, T38, T6Y, T2Y, T37; T2Y = T2S - T2X; T2Z = FMA(KP707106781, T2Y, T2N); T6X = FNMS(KP707106781, T2Y, T2N); T37 = T35 + T36; T38 = FMA(KP707106781, T37, T34); T6Y = FNMS(KP707106781, T37, T34); T39 = FNMS(KP198912367, T38, T2Z); T7r = FNMS(KP668178637, T6X, T6Y); T5H = FMA(KP198912367, T2Z, T38); T6Z = FMA(KP668178637, T6Y, T6X); } } { E T8R, Tb9, T8U, Tba, T8Q, T8T; T8Q = T3x - T3w; T8R = FNMS(KP707106781, T8Q, T8P); Tb9 = FMA(KP707106781, T8Q, T8P); T8T = T3j + T3o; T8U = FNMS(KP707106781, T8T, T8S); Tba = FMA(KP707106781, T8T, T8S); T8V = FMA(KP668178637, T8U, T8R); TbC = FMA(KP198912367, Tb9, Tba); T9S = FNMS(KP668178637, T8R, T8U); Tbb = FNMS(KP198912367, Tba, Tb9); } { E T3q, T70, T3z, T71, T3p, T3y; T3p = T3j - T3o; T3q = FMA(KP707106781, T3p, T3e); T70 = FNMS(KP707106781, T3p, T3e); T3y = T3w + T3x; T3z = FMA(KP707106781, T3y, T3v); T71 = FNMS(KP707106781, T3y, T3v); T3A = FMA(KP198912367, T3z, T3q); T7q = FMA(KP668178637, T70, T71); T5G = FNMS(KP198912367, T3q, T3z); T72 = FNMS(KP668178637, T71, T70); } { E T8Y, Tbc, T91, Tbd, T8X, T90; T8X = T35 - T36; T8Y = FNMS(KP707106781, T8X, T8W); Tbc = FMA(KP707106781, T8X, T8W); T90 = T2S + T2X; T91 = FNMS(KP707106781, T90, T8Z); Tbd = FMA(KP707106781, T90, T8Z); T92 = FMA(KP668178637, T91, T8Y); TbD = FMA(KP198912367, Tbc, Tbd); T9T = FNMS(KP668178637, T8Y, T91); Tbe = FNMS(KP198912367, Tbd, Tbc); } } { E T18, Ted, ThI, T4A, T5f, T9g, TdY, T95, T1u, Te4, ThM, T52, T57, T9c, Te1; E T9b, T1f, Teg, ThJ, T4F, T4K, T5h, TdZ, T5g, T1n, Te9, ThL, T4R, T4W, T99; E Te6, T98; { E T14, T5b, T5e, TdX, T17, T4w, T4z, TdW; { E T12, T13, T5c, T5d; T12 = cr[WS(rs, 1)]; T13 = ci[WS(rs, 30)]; T14 = T12 + T13; T5b = T12 - T13; T5c = ci[WS(rs, 46)]; T5d = cr[WS(rs, 49)]; T5e = T5c + T5d; TdX = T5c - T5d; } { E T15, T16, T4x, T4y; T15 = cr[WS(rs, 17)]; T16 = ci[WS(rs, 14)]; T17 = T15 + T16; T4w = T15 - T16; T4x = ci[WS(rs, 62)]; T4y = cr[WS(rs, 33)]; T4z = T4x + T4y; TdW = T4x - T4y; } T18 = T14 + T17; Ted = T14 - T17; ThI = TdW + TdX; T4A = T4w + T4z; T5f = T5b - T5e; T9g = T5b + T5e; TdY = TdW - TdX; T95 = T4z - T4w; } { E T1q, T53, T56, Te3, T1t, T4Y, T51, Te2; { E T1o, T1p, T54, T55; T1o = ci[WS(rs, 2)]; T1p = cr[WS(rs, 29)]; T1q = T1o + T1p; T53 = T1o - T1p; T54 = ci[WS(rs, 50)]; T55 = cr[WS(rs, 45)]; T56 = T54 + T55; Te3 = T54 - T55; } { E T1r, T1s, T4Z, T50; T1r = cr[WS(rs, 13)]; T1s = ci[WS(rs, 18)]; T1t = T1r + T1s; T4Y = T1r - T1s; T4Z = ci[WS(rs, 34)]; T50 = cr[WS(rs, 61)]; T51 = T4Z + T50; Te2 = T4Z - T50; } T1u = T1q + T1t; Te4 = Te2 - Te3; ThM = Te2 + Te3; T52 = T4Y - T51; T57 = T53 - T56; T9c = T4Y + T51; Te1 = T1q - T1t; T9b = T53 + T56; } { E T1b, T4B, T4J, Tee, T1e, T4G, T4E, Tef; { E T19, T1a, T4H, T4I; T19 = cr[WS(rs, 9)]; T1a = ci[WS(rs, 22)]; T1b = T19 + T1a; T4B = T19 - T1a; T4H = ci[WS(rs, 38)]; T4I = cr[WS(rs, 57)]; T4J = T4H + T4I; Tee = T4H - T4I; } { E T1c, T1d, T4C, T4D; T1c = ci[WS(rs, 6)]; T1d = cr[WS(rs, 25)]; T1e = T1c + T1d; T4G = T1c - T1d; T4C = ci[WS(rs, 54)]; T4D = cr[WS(rs, 41)]; T4E = T4C + T4D; Tef = T4C - T4D; } T1f = T1b + T1e; Teg = Tee - Tef; ThJ = Tef + Tee; T4F = T4B + T4E; T4K = T4G + T4J; T5h = T4G - T4J; TdZ = T1b - T1e; T5g = T4B - T4E; } { E T1j, T4S, T4V, Te8, T1m, T4N, T4Q, Te7; { E T1h, T1i, T4T, T4U; T1h = cr[WS(rs, 5)]; T1i = ci[WS(rs, 26)]; T1j = T1h + T1i; T4S = T1h - T1i; T4T = ci[WS(rs, 42)]; T4U = cr[WS(rs, 53)]; T4V = T4T + T4U; Te8 = T4T - T4U; } { E T1k, T1l, T4O, T4P; T1k = cr[WS(rs, 21)]; T1l = ci[WS(rs, 10)]; T1m = T1k + T1l; T4N = T1k - T1l; T4O = ci[WS(rs, 58)]; T4P = cr[WS(rs, 37)]; T4Q = T4O + T4P; Te7 = T4O - T4P; } T1n = T1j + T1m; Te9 = Te7 - Te8; ThL = Te7 + Te8; T4R = T4N + T4Q; T4W = T4S - T4V; T99 = T4Q - T4N; Te6 = T1j - T1m; T98 = T4S + T4V; } { E T1g, T1v, Tjo, Tjp; T1g = T18 + T1f; T1v = T1n + T1u; T1w = T1g + T1v; ThH = T1g - T1v; Tjo = ThI - ThJ; Tjp = T1n - T1u; Tjq = Tjo - Tjp; Tke = Tjp + Tjo; } { E Tjr, Tjs, ThK, ThN; Tjr = T18 - T1f; Tjs = ThM - ThL; Tjt = Tjr - Tjs; Tkf = Tjr + Tjs; ThK = ThI + ThJ; ThN = ThL + ThM; ThO = ThK - ThN; TiK = ThK + ThN; } { E Te0, Tg9, Teb, Tga, Te5, Tea; Te0 = TdY - TdZ; Tg9 = Ted + Teg; Te5 = Te1 + Te4; Tea = Te6 - Te9; Teb = Te5 - Tea; Tga = Tea + Te5; Tec = FNMS(KP707106781, Teb, Te0); TgT = FMA(KP707106781, Tga, Tg9); Tfc = FMA(KP707106781, Teb, Te0); Tgb = FNMS(KP707106781, Tga, Tg9); } { E Teh, Tg6, Tek, Tg7, Tei, Tej; Teh = Ted - Teg; Tg6 = TdZ + TdY; Tei = Te6 + Te9; Tej = Te4 - Te1; Tek = Tei - Tej; Tg7 = Tei + Tej; Tel = FNMS(KP707106781, Tek, Teh); TgU = FMA(KP707106781, Tg7, Tg6); Tfd = FMA(KP707106781, Tek, Teh); Tg8 = FNMS(KP707106781, Tg7, Tg6); } { E T4M, T78, T5j, T75, T59, T76, T5m, T79, T4L, T5i; T4L = T4F - T4K; T4M = FMA(KP707106781, T4L, T4A); T78 = FNMS(KP707106781, T4L, T4A); T5i = T5g + T5h; T5j = FMA(KP707106781, T5i, T5f); T75 = FNMS(KP707106781, T5i, T5f); { E T4X, T58, T5k, T5l; T4X = FMA(KP414213562, T4W, T4R); T58 = FNMS(KP414213562, T57, T52); T59 = T4X + T58; T76 = T4X - T58; T5k = FNMS(KP414213562, T4R, T4W); T5l = FMA(KP414213562, T52, T57); T5m = T5k + T5l; T79 = T5l - T5k; } T5a = FNMS(KP923879532, T59, T4M); T82 = FMA(KP923879532, T79, T78); T83 = FMA(KP923879532, T76, T75); T5n = FNMS(KP923879532, T5m, T5j); T6i = FMA(KP923879532, T59, T4M); T77 = FNMS(KP923879532, T76, T75); T7a = FNMS(KP923879532, T79, T78); T6j = FMA(KP923879532, T5m, T5j); } { E T97, Tbk, T9i, Tbh, T9e, Tbi, T9l, Tbl, T96, T9h; T96 = T5h - T5g; T97 = FNMS(KP707106781, T96, T95); Tbk = FMA(KP707106781, T96, T95); T9h = T4F + T4K; T9i = FNMS(KP707106781, T9h, T9g); Tbh = FMA(KP707106781, T9h, T9g); { E T9a, T9d, T9j, T9k; T9a = FMA(KP414213562, T99, T98); T9d = FMA(KP414213562, T9c, T9b); T9e = T9a - T9d; Tbi = T9a + T9d; T9j = FNMS(KP414213562, T98, T99); T9k = FNMS(KP414213562, T9b, T9c); T9l = T9j + T9k; Tbl = T9j - T9k; } T9f = FNMS(KP923879532, T9e, T97); Tcb = FMA(KP923879532, Tbl, Tbk); Tcc = FMA(KP923879532, Tbi, Tbh); T9m = FMA(KP923879532, T9l, T9i); Tar = FNMS(KP923879532, T9l, T9i); Tbj = FNMS(KP923879532, Tbi, Tbh); Tbm = FNMS(KP923879532, Tbl, Tbk); Tas = FMA(KP923879532, T9e, T97); } } { E T1D, TdM, ThR, T3H, T4m, T9z, Tdx, T9o, T1Z, TdD, ThV, T49, T4e, T9s, TdA; E T9r, T1K, TdP, ThS, T3M, T3R, T4o, Tdy, T4n, T1S, TdI, ThU, T3Y, T43, T9v; E TdF, T9u; { E T1z, T4i, T4l, Tdw, T1C, T3D, T3G, Tdv; { E T1x, T1y, T4j, T4k; T1x = ci[0]; T1y = cr[WS(rs, 31)]; T1z = T1x + T1y; T4i = T1x - T1y; T4j = ci[WS(rs, 48)]; T4k = cr[WS(rs, 47)]; T4l = T4j + T4k; Tdw = T4j - T4k; } { E T1A, T1B, T3E, T3F; T1A = cr[WS(rs, 15)]; T1B = ci[WS(rs, 16)]; T1C = T1A + T1B; T3D = T1A - T1B; T3E = ci[WS(rs, 32)]; T3F = cr[WS(rs, 63)]; T3G = T3E + T3F; Tdv = T3E - T3F; } T1D = T1z + T1C; TdM = T1z - T1C; ThR = Tdv + Tdw; T3H = T3D - T3G; T4m = T4i - T4l; T9z = T4i + T4l; Tdx = Tdv - Tdw; T9o = T3D + T3G; } { E T1V, T4a, T4d, TdC, T1Y, T45, T48, TdB; { E T1T, T1U, T4b, T4c; T1T = ci[WS(rs, 4)]; T1U = cr[WS(rs, 27)]; T1V = T1T + T1U; T4a = T1T - T1U; T4b = ci[WS(rs, 52)]; T4c = cr[WS(rs, 43)]; T4d = T4b + T4c; TdC = T4b - T4c; } { E T1W, T1X, T46, T47; T1W = cr[WS(rs, 11)]; T1X = ci[WS(rs, 20)]; T1Y = T1W + T1X; T45 = T1W - T1X; T46 = ci[WS(rs, 36)]; T47 = cr[WS(rs, 59)]; T48 = T46 + T47; TdB = T46 - T47; } T1Z = T1V + T1Y; TdD = TdB - TdC; ThV = TdB + TdC; T49 = T45 - T48; T4e = T4a - T4d; T9s = T45 + T48; TdA = T1V - T1Y; T9r = T4a + T4d; } { E T1G, T3I, T3Q, TdN, T1J, T3N, T3L, TdO; { E T1E, T1F, T3O, T3P; T1E = cr[WS(rs, 7)]; T1F = ci[WS(rs, 24)]; T1G = T1E + T1F; T3I = T1E - T1F; T3O = ci[WS(rs, 40)]; T3P = cr[WS(rs, 55)]; T3Q = T3O + T3P; TdN = T3O - T3P; } { E T1H, T1I, T3J, T3K; T1H = ci[WS(rs, 8)]; T1I = cr[WS(rs, 23)]; T1J = T1H + T1I; T3N = T1H - T1I; T3J = ci[WS(rs, 56)]; T3K = cr[WS(rs, 39)]; T3L = T3J + T3K; TdO = T3J - T3K; } T1K = T1G + T1J; TdP = TdN - TdO; ThS = TdO + TdN; T3M = T3I + T3L; T3R = T3N + T3Q; T4o = T3N - T3Q; Tdy = T1G - T1J; T4n = T3I - T3L; } { E T1O, T3Z, T42, TdH, T1R, T3U, T3X, TdG; { E T1M, T1N, T40, T41; T1M = cr[WS(rs, 3)]; T1N = ci[WS(rs, 28)]; T1O = T1M + T1N; T3Z = T1M - T1N; T40 = ci[WS(rs, 44)]; T41 = cr[WS(rs, 51)]; T42 = T40 + T41; TdH = T40 - T41; } { E T1P, T1Q, T3V, T3W; T1P = cr[WS(rs, 19)]; T1Q = ci[WS(rs, 12)]; T1R = T1P + T1Q; T3U = T1P - T1Q; T3V = ci[WS(rs, 60)]; T3W = cr[WS(rs, 35)]; T3X = T3V + T3W; TdG = T3V - T3W; } T1S = T1O + T1R; TdI = TdG - TdH; ThU = TdG + TdH; T3Y = T3U + T3X; T43 = T3Z - T42; T9v = T3U - T3X; TdF = T1O - T1R; T9u = T3Z + T42; } { E T1L, T20, Tjh, Tji; T1L = T1D + T1K; T20 = T1S + T1Z; T21 = T1L + T20; ThQ = T1L - T20; Tjh = ThR - ThS; Tji = T1S - T1Z; Tjj = Tjh - Tji; Tkb = Tji + Tjh; } { E Tjk, Tjl, ThT, ThW; Tjk = T1D - T1K; Tjl = ThV - ThU; Tjm = Tjk - Tjl; Tkc = Tjk + Tjl; ThT = ThR + ThS; ThW = ThU + ThV; ThX = ThT - ThW; TiL = ThT + ThW; } { E Tdz, Tg2, TdK, Tg3, TdE, TdJ; Tdz = Tdx - Tdy; Tg2 = TdM + TdP; TdE = TdA + TdD; TdJ = TdF - TdI; TdK = TdE - TdJ; Tg3 = TdJ + TdE; TdL = FNMS(KP707106781, TdK, Tdz); TgW = FMA(KP707106781, Tg3, Tg2); Tf9 = FMA(KP707106781, TdK, Tdz); Tg4 = FNMS(KP707106781, Tg3, Tg2); } { E TdQ, TfZ, TdT, Tg0, TdR, TdS; TdQ = TdM - TdP; TfZ = Tdy + Tdx; TdR = TdF + TdI; TdS = TdD - TdA; TdT = TdR - TdS; Tg0 = TdR + TdS; TdU = FNMS(KP707106781, TdT, TdQ); TgX = FMA(KP707106781, Tg0, TfZ); Tfa = FMA(KP707106781, TdT, TdQ); Tg1 = FNMS(KP707106781, Tg0, TfZ); } { E T3T, T7f, T4q, T7c, T4g, T7d, T4t, T7g, T3S, T4p; T3S = T3M - T3R; T3T = FMA(KP707106781, T3S, T3H); T7f = FNMS(KP707106781, T3S, T3H); T4p = T4n + T4o; T4q = FMA(KP707106781, T4p, T4m); T7c = FNMS(KP707106781, T4p, T4m); { E T44, T4f, T4r, T4s; T44 = FMA(KP414213562, T43, T3Y); T4f = FNMS(KP414213562, T4e, T49); T4g = T44 + T4f; T7d = T44 - T4f; T4r = FNMS(KP414213562, T3Y, T43); T4s = FMA(KP414213562, T49, T4e); T4t = T4r + T4s; T7g = T4s - T4r; } T4h = FNMS(KP923879532, T4g, T3T); T7Z = FMA(KP923879532, T7g, T7f); T80 = FMA(KP923879532, T7d, T7c); T4u = FNMS(KP923879532, T4t, T4q); T6f = FMA(KP923879532, T4g, T3T); T7e = FNMS(KP923879532, T7d, T7c); T7h = FNMS(KP923879532, T7g, T7f); T6g = FMA(KP923879532, T4t, T4q); } { E T9q, Tbr, T9B, Tbo, T9x, Tbp, T9E, Tbs, T9p, T9A; T9p = T4n - T4o; T9q = FNMS(KP707106781, T9p, T9o); Tbr = FMA(KP707106781, T9p, T9o); T9A = T3M + T3R; T9B = FNMS(KP707106781, T9A, T9z); Tbo = FMA(KP707106781, T9A, T9z); { E T9t, T9w, T9C, T9D; T9t = FMA(KP414213562, T9s, T9r); T9w = FNMS(KP414213562, T9v, T9u); T9x = T9t - T9w; Tbp = T9w + T9t; T9C = FMA(KP414213562, T9u, T9v); T9D = FNMS(KP414213562, T9r, T9s); T9E = T9C - T9D; Tbs = T9C + T9D; } T9y = FNMS(KP923879532, T9x, T9q); Tce = FMA(KP923879532, Tbs, Tbr); Tcf = FMA(KP923879532, Tbp, Tbo); T9F = FNMS(KP923879532, T9E, T9B); Tau = FMA(KP923879532, T9E, T9B); Tbq = FNMS(KP923879532, Tbp, Tbo); Tbt = FNMS(KP923879532, Tbs, Tbr); Tav = FMA(KP923879532, T9x, T9q); } } { E T11, T22, TiE, TiJ, TiM, TiN; T11 = Tv + T10; T22 = T1w + T21; TiE = T11 - T22; TiJ = TiH + TiI; TiM = TiK + TiL; TiN = TiJ - TiM; cr[0] = T11 + T22; ci[0] = TiJ + TiM; { E TiD, TiF, TiG, TiO; TiD = W[62]; TiF = TiD * TiE; TiG = W[63]; TiO = TiG * TiE; cr[WS(rs, 32)] = FNMS(TiG, TiN, TiF); ci[WS(rs, 32)] = FMA(TiD, TiN, TiO); } } { E TiS, Tj0, TiX, Tj3; { E TiQ, TiR, TiV, TiW; TiQ = Tv - T10; TiR = TiL - TiK; TiS = TiQ - TiR; Tj0 = TiQ + TiR; TiV = TiH - TiI; TiW = T1w - T21; TiX = TiV - TiW; Tj3 = TiW + TiV; } { E TiT, TiY, TiP, TiU; TiP = W[94]; TiT = TiP * TiS; TiY = TiP * TiX; TiU = W[95]; cr[WS(rs, 48)] = FNMS(TiU, TiX, TiT); ci[WS(rs, 48)] = FMA(TiU, TiS, TiY); } { E Tj1, Tj4, TiZ, Tj2; TiZ = W[30]; Tj1 = TiZ * Tj0; Tj4 = TiZ * Tj3; Tj2 = W[31]; cr[WS(rs, 16)] = FNMS(Tj2, Tj3, Tj1); ci[WS(rs, 16)] = FMA(Tj2, Tj0, Tj4); } } { E Tib, Tie, Tiy, Tiq, Ti0, TiB, Tii, Tiv; Tib = Ti3 + Tia; { E Tio, Tic, Tid, Tip; Tio = Thy - ThF; Tic = ThH + ThO; Tid = ThX - ThQ; Tip = Tid - Tic; Tie = Tic + Tid; Tiy = FMA(KP707106781, Tip, Tio); Tiq = FNMS(KP707106781, Tip, Tio); } { E ThG, Tit, ThZ, Tiu, ThP, ThY; ThG = Thy + ThF; Tit = Tia - Ti3; ThP = ThH - ThO; ThY = ThQ + ThX; ThZ = ThP + ThY; Tiu = ThP - ThY; Ti0 = FNMS(KP707106781, ThZ, ThG); TiB = FMA(KP707106781, Tiu, Tit); Tii = FMA(KP707106781, ThZ, ThG); Tiv = FNMS(KP707106781, Tiu, Tit); } { E Tir, Tiw, Tin, Tis; Tin = W[110]; Tir = Tin * Tiq; Tiw = Tin * Tiv; Tis = W[111]; cr[WS(rs, 56)] = FNMS(Tis, Tiv, Tir); ci[WS(rs, 56)] = FMA(Tis, Tiq, Tiw); } { E Tiz, TiC, Tix, TiA; Tix = W[46]; Tiz = Tix * Tiy; TiC = Tix * TiB; TiA = W[47]; cr[WS(rs, 24)] = FNMS(TiA, TiB, Tiz); ci[WS(rs, 24)] = FMA(TiA, Tiy, TiC); } { E Tif, Ti2, Tig, Thx, Ti1; Tif = FNMS(KP707106781, Tie, Tib); Ti2 = W[79]; Tig = Ti2 * Ti0; Thx = W[78]; Ti1 = Thx * Ti0; cr[WS(rs, 40)] = FNMS(Ti2, Tif, Ti1); ci[WS(rs, 40)] = FMA(Thx, Tif, Tig); } { E Til, Tik, Tim, Tih, Tij; Til = FMA(KP707106781, Tie, Tib); Tik = W[15]; Tim = Tik * Tii; Tih = W[14]; Tij = Tih * Tii; cr[WS(rs, 8)] = FNMS(Tik, Til, Tij); ci[WS(rs, 8)] = FMA(Tih, Til, Tim); } } { E Tjw, Tk2, Tk5, TjF, TjI, TjU, TjZ, TjM; { E TjE, TjX, Tjg, TjS, TjG, TjH, TjT, Tjv, TjY, Tjf, Tjn, Tju; TjE = TjC - TjD; TjX = FNMS(KP707106781, TjE, TjB); Tjf = Tjb - Tje; Tjg = FMA(KP707106781, Tjf, Tj8); TjS = FNMS(KP707106781, Tjf, Tj8); TjG = FMA(KP414213562, Tjq, Tjt); TjH = FNMS(KP414213562, Tjj, Tjm); TjT = TjG + TjH; Tjn = FMA(KP414213562, Tjm, Tjj); Tju = FNMS(KP414213562, Tjt, Tjq); Tjv = Tjn - Tju; TjY = Tju + Tjn; Tjw = FNMS(KP923879532, Tjv, Tjg); Tk2 = FMA(KP923879532, TjT, TjS); Tk5 = FMA(KP923879532, TjY, TjX); TjF = FMA(KP707106781, TjE, TjB); TjI = TjG - TjH; TjU = FNMS(KP923879532, TjT, TjS); TjZ = FNMS(KP923879532, TjY, TjX); TjM = FMA(KP923879532, Tjv, Tjg); } { E TjV, Tk0, TjR, TjW; TjR = W[54]; TjV = TjR * TjU; Tk0 = TjR * TjZ; TjW = W[55]; cr[WS(rs, 28)] = FNMS(TjW, TjZ, TjV); ci[WS(rs, 28)] = FMA(TjW, TjU, Tk0); } { E Tk3, Tk6, Tk1, Tk4; Tk1 = W[118]; Tk3 = Tk1 * Tk2; Tk6 = Tk1 * Tk5; Tk4 = W[119]; cr[WS(rs, 60)] = FNMS(Tk4, Tk5, Tk3); ci[WS(rs, 60)] = FMA(Tk4, Tk2, Tk6); } { E TjJ, Tjy, TjK, Tj5, Tjx; TjJ = FNMS(KP923879532, TjI, TjF); Tjy = W[87]; TjK = Tjy * Tjw; Tj5 = W[86]; Tjx = Tj5 * Tjw; cr[WS(rs, 44)] = FNMS(Tjy, TjJ, Tjx); ci[WS(rs, 44)] = FMA(Tj5, TjJ, TjK); } { E TjP, TjO, TjQ, TjL, TjN; TjP = FMA(KP923879532, TjI, TjF); TjO = W[23]; TjQ = TjO * TjM; TjL = W[22]; TjN = TjL * TjM; cr[WS(rs, 12)] = FNMS(TjO, TjP, TjN); ci[WS(rs, 12)] = FMA(TjL, TjP, TjQ); } } { E Tki, TkK, TkN, Tkn, Tkq, TkC, TkH, Tku; { E Tkm, TkF, Tka, TkA, Tko, Tkp, TkB, Tkh, TkG, Tk9, Tkd, Tkg; Tkm = Tje + Tjb; TkF = FMA(KP707106781, Tkm, Tkl); Tk9 = TjC + TjD; Tka = FNMS(KP707106781, Tk9, Tk8); TkA = FMA(KP707106781, Tk9, Tk8); Tko = FNMS(KP414213562, Tke, Tkf); Tkp = FMA(KP414213562, Tkb, Tkc); TkB = Tko + Tkp; Tkd = FNMS(KP414213562, Tkc, Tkb); Tkg = FMA(KP414213562, Tkf, Tke); Tkh = Tkd - Tkg; TkG = Tkg + Tkd; Tki = FNMS(KP923879532, Tkh, Tka); TkK = FMA(KP923879532, TkB, TkA); TkN = FMA(KP923879532, TkG, TkF); Tkn = FNMS(KP707106781, Tkm, Tkl); Tkq = Tko - Tkp; TkC = FNMS(KP923879532, TkB, TkA); TkH = FNMS(KP923879532, TkG, TkF); Tku = FMA(KP923879532, Tkh, Tka); } { E TkD, TkI, Tkz, TkE; Tkz = W[70]; TkD = Tkz * TkC; TkI = Tkz * TkH; TkE = W[71]; cr[WS(rs, 36)] = FNMS(TkE, TkH, TkD); ci[WS(rs, 36)] = FMA(TkE, TkC, TkI); } { E TkL, TkO, TkJ, TkM; TkJ = W[6]; TkL = TkJ * TkK; TkO = TkJ * TkN; TkM = W[7]; cr[WS(rs, 4)] = FNMS(TkM, TkN, TkL); ci[WS(rs, 4)] = FMA(TkM, TkK, TkO); } { E Tkr, Tkk, Tks, Tk7, Tkj; Tkr = FNMS(KP923879532, Tkq, Tkn); Tkk = W[103]; Tks = Tkk * Tki; Tk7 = W[102]; Tkj = Tk7 * Tki; cr[WS(rs, 52)] = FNMS(Tkk, Tkr, Tkj); ci[WS(rs, 52)] = FMA(Tk7, Tkr, Tks); } { E Tkx, Tkw, Tky, Tkt, Tkv; Tkx = FMA(KP923879532, Tkq, Tkn); Tkw = W[39]; Tky = Tkw * Tku; Tkt = W[38]; Tkv = Tkt * Tku; cr[WS(rs, 20)] = FNMS(Tkw, Tkx, Tkv); ci[WS(rs, 20)] = FMA(Tkt, Tkx, Tky); } } { E T5q, T66, T69, T5J, T5M, T5Y, T63, T5Q; { E T5F, T5I, T61, T5K, T5L, T5X, T3C, T5W, T5p, T62; T5F = FNMS(KP923879532, T5E, T5B); T5I = T5G - T5H; T61 = FNMS(KP980785280, T5I, T5F); T5K = FMA(KP820678790, T5a, T5n); T5L = FNMS(KP820678790, T4h, T4u); T5X = T5K + T5L; { E T2I, T3B, T4v, T5o; T2I = FNMS(KP923879532, T2H, T2k); T3B = T39 - T3A; T3C = FMA(KP980785280, T3B, T2I); T5W = FNMS(KP980785280, T3B, T2I); T4v = FMA(KP820678790, T4u, T4h); T5o = FNMS(KP820678790, T5n, T5a); T5p = T4v - T5o; T62 = T5o + T4v; } T5q = FNMS(KP773010453, T5p, T3C); T66 = FMA(KP773010453, T5X, T5W); T69 = FMA(KP773010453, T62, T61); T5J = FMA(KP980785280, T5I, T5F); T5M = T5K - T5L; T5Y = FNMS(KP773010453, T5X, T5W); T63 = FNMS(KP773010453, T62, T61); T5Q = FMA(KP773010453, T5p, T3C); } { E T5Z, T64, T5V, T60; T5V = W[48]; T5Z = T5V * T5Y; T64 = T5V * T63; T60 = W[49]; cr[WS(rs, 25)] = FNMS(T60, T63, T5Z); ci[WS(rs, 25)] = FMA(T60, T5Y, T64); } { E T67, T6a, T65, T68; T65 = W[112]; T67 = T65 * T66; T6a = T65 * T69; T68 = W[113]; cr[WS(rs, 57)] = FNMS(T68, T69, T67); ci[WS(rs, 57)] = FMA(T68, T66, T6a); } { E T5N, T5s, T5O, T23, T5r; T5N = FNMS(KP773010453, T5M, T5J); T5s = W[81]; T5O = T5s * T5q; T23 = W[80]; T5r = T23 * T5q; cr[WS(rs, 41)] = FNMS(T5s, T5N, T5r); ci[WS(rs, 41)] = FMA(T23, T5N, T5O); } { E T5T, T5S, T5U, T5P, T5R; T5T = FMA(KP773010453, T5M, T5J); T5S = W[17]; T5U = T5S * T5Q; T5P = W[16]; T5R = T5P * T5Q; cr[WS(rs, 9)] = FNMS(T5S, T5T, T5R); ci[WS(rs, 9)] = FMA(T5P, T5T, T5U); } } { E Tge, TgG, TgK, Tgr, Tgu, TgC, TgF, Tgx; { E Tg5, Tgc, Tgd, Tgj, Tgm, Tgn, TfY, TgA, Tgq, TgB; Tg5 = FMA(KP668178637, Tg4, Tg1); Tgc = FNMS(KP668178637, Tgb, Tg8); Tgd = Tg5 - Tgc; Tgj = FNMS(KP707106781, Tgi, Tgh); Tgm = Tgk - Tgl; Tgn = FMA(KP923879532, Tgm, Tgj); { E TfQ, TfX, Tgo, Tgp; TfQ = FNMS(KP707106781, TfP, TfO); TfX = TfT - TfW; TfY = FMA(KP923879532, TfX, TfQ); TgA = FNMS(KP923879532, TfX, TfQ); Tgo = FMA(KP668178637, Tg8, Tgb); Tgp = FNMS(KP668178637, Tg1, Tg4); Tgq = Tgo - Tgp; TgB = Tgo + Tgp; } Tge = FNMS(KP831469612, Tgd, TfY); TgG = Tgc + Tg5; TgK = FMA(KP831469612, TgB, TgA); Tgr = FNMS(KP831469612, Tgq, Tgn); Tgu = FMA(KP831469612, Tgd, TfY); TgC = FNMS(KP831469612, TgB, TgA); TgF = FNMS(KP923879532, Tgm, Tgj); Tgx = FMA(KP831469612, Tgq, Tgn); } { E Tgf, Tgs, TfN, Tgg; TfN = W[82]; Tgf = TfN * Tge; Tgs = TfN * Tgr; Tgg = W[83]; cr[WS(rs, 42)] = FNMS(Tgg, Tgr, Tgf); ci[WS(rs, 42)] = FMA(Tgg, Tge, Tgs); } { E Tgv, Tgy, Tgt, Tgw; Tgt = W[18]; Tgv = Tgt * Tgu; Tgy = Tgt * Tgx; Tgw = W[19]; cr[WS(rs, 10)] = FNMS(Tgw, Tgx, Tgv); ci[WS(rs, 10)] = FMA(Tgw, Tgu, Tgy); } { E TgH, TgE, TgI, Tgz, TgD; TgH = FNMS(KP831469612, TgG, TgF); TgE = W[51]; TgI = TgE * TgC; Tgz = W[50]; TgD = Tgz * TgC; cr[WS(rs, 26)] = FNMS(TgE, TgH, TgD); ci[WS(rs, 26)] = FMA(Tgz, TgH, TgI); } { E TgN, TgM, TgO, TgJ, TgL; TgN = FMA(KP831469612, TgG, TgF); TgM = W[115]; TgO = TgM * TgK; TgJ = W[114]; TgL = TgJ * TgK; cr[WS(rs, 58)] = FNMS(TgM, TgN, TgL); ci[WS(rs, 58)] = FMA(TgJ, TgN, TgO); } } { E Th0, Ths, Thv, Th5, Th8, Thk, Thp, Thc; { E Th3, Th4, Thn, Th6, Th7, Thj, TgS, Thi, TgZ, Tho; Th3 = FMA(KP707106781, Tgi, Tgh); Th4 = TfW + TfT; Thn = FNMS(KP923879532, Th4, Th3); Th6 = FMA(KP198912367, TgT, TgU); Th7 = FNMS(KP198912367, TgW, TgX); Thj = Th7 - Th6; { E TgQ, TgR, TgV, TgY; TgQ = FMA(KP707106781, TfP, TfO); TgR = Tgk + Tgl; TgS = FMA(KP923879532, TgR, TgQ); Thi = FNMS(KP923879532, TgR, TgQ); TgV = FNMS(KP198912367, TgU, TgT); TgY = FMA(KP198912367, TgX, TgW); TgZ = TgV + TgY; Tho = TgV - TgY; } Th0 = FNMS(KP980785280, TgZ, TgS); Ths = FMA(KP980785280, Thj, Thi); Thv = FMA(KP980785280, Tho, Thn); Th5 = FMA(KP923879532, Th4, Th3); Th8 = Th6 + Th7; Thk = FNMS(KP980785280, Thj, Thi); Thp = FNMS(KP980785280, Tho, Thn); Thc = FMA(KP980785280, TgZ, TgS); } { E Thl, Thq, Thh, Thm; Thh = W[98]; Thl = Thh * Thk; Thq = Thh * Thp; Thm = W[99]; cr[WS(rs, 50)] = FNMS(Thm, Thp, Thl); ci[WS(rs, 50)] = FMA(Thm, Thk, Thq); } { E Tht, Thw, Thr, Thu; Thr = W[34]; Tht = Thr * Ths; Thw = Thr * Thv; Thu = W[35]; cr[WS(rs, 18)] = FNMS(Thu, Thv, Tht); ci[WS(rs, 18)] = FMA(Thu, Ths, Thw); } { E Th9, Th2, Tha, TgP, Th1; Th9 = FNMS(KP980785280, Th8, Th5); Th2 = W[67]; Tha = Th2 * Th0; TgP = W[66]; Th1 = TgP * Th0; cr[WS(rs, 34)] = FNMS(Th2, Th9, Th1); ci[WS(rs, 34)] = FMA(TgP, Th9, Tha); } { E Thf, The, Thg, Thb, Thd; Thf = FMA(KP980785280, Th8, Th5); The = W[3]; Thg = The * Thc; Thb = W[2]; Thd = Thb * Thc; cr[WS(rs, 2)] = FNMS(The, Thf, Thd); ci[WS(rs, 2)] = FMA(Thb, Thf, Thg); } } { E T6m, T6O, T6R, T6r, T6u, T6G, T6L, T6y; { E T6p, T6q, T6J, T6s, T6t, T6F, T6e, T6E, T6l, T6K; T6p = FMA(KP923879532, T5E, T5B); T6q = T3A + T39; T6J = FMA(KP980785280, T6q, T6p); T6s = FNMS(KP098491403, T6i, T6j); T6t = FMA(KP098491403, T6f, T6g); T6F = T6s + T6t; { E T6c, T6d, T6h, T6k; T6c = FMA(KP923879532, T2H, T2k); T6d = T5G + T5H; T6e = FNMS(KP980785280, T6d, T6c); T6E = FMA(KP980785280, T6d, T6c); T6h = FNMS(KP098491403, T6g, T6f); T6k = FMA(KP098491403, T6j, T6i); T6l = T6h - T6k; T6K = T6k + T6h; } T6m = FNMS(KP995184726, T6l, T6e); T6O = FMA(KP995184726, T6F, T6E); T6R = FMA(KP995184726, T6K, T6J); T6r = FNMS(KP980785280, T6q, T6p); T6u = T6s - T6t; T6G = FNMS(KP995184726, T6F, T6E); T6L = FNMS(KP995184726, T6K, T6J); T6y = FMA(KP995184726, T6l, T6e); } { E T6H, T6M, T6D, T6I; T6D = W[64]; T6H = T6D * T6G; T6M = T6D * T6L; T6I = W[65]; cr[WS(rs, 33)] = FNMS(T6I, T6L, T6H); ci[WS(rs, 33)] = FMA(T6I, T6G, T6M); } { E T6P, T6S, T6N, T6Q; T6N = W[0]; T6P = T6N * T6O; T6S = T6N * T6R; T6Q = W[1]; cr[WS(rs, 1)] = FNMS(T6Q, T6R, T6P); ci[WS(rs, 1)] = FMA(T6Q, T6O, T6S); } { E T6v, T6o, T6w, T6b, T6n; T6v = FNMS(KP995184726, T6u, T6r); T6o = W[97]; T6w = T6o * T6m; T6b = W[96]; T6n = T6b * T6m; cr[WS(rs, 49)] = FNMS(T6o, T6v, T6n); ci[WS(rs, 49)] = FMA(T6b, T6v, T6w); } { E T6B, T6A, T6C, T6x, T6z; T6B = FMA(KP995184726, T6u, T6r); T6A = W[33]; T6C = T6A * T6y; T6x = W[32]; T6z = T6x * T6y; cr[WS(rs, 17)] = FNMS(T6A, T6B, T6z); ci[WS(rs, 17)] = FMA(T6x, T6B, T6C); } } { E Tbw, Tc2, Tc5, TbF, TbI, TbU, TbZ, TbM; { E TbB, TbE, TbX, TbG, TbH, TbT, Tbg, TbS, Tbv, TbY; TbB = FMA(KP923879532, TbA, Tbz); TbE = TbC - TbD; TbX = FNMS(KP980785280, TbE, TbB); TbG = FMA(KP820678790, Tbj, Tbm); TbH = FMA(KP820678790, Tbq, Tbt); TbT = TbG + TbH; { E Tb8, Tbf, Tbn, Tbu; Tb8 = FNMS(KP923879532, Tb7, Tb6); Tbf = Tbb + Tbe; Tbg = FNMS(KP980785280, Tbf, Tb8); TbS = FMA(KP980785280, Tbf, Tb8); Tbn = FNMS(KP820678790, Tbm, Tbj); Tbu = FNMS(KP820678790, Tbt, Tbq); Tbv = Tbn + Tbu; TbY = Tbn - Tbu; } Tbw = FNMS(KP773010453, Tbv, Tbg); Tc2 = FMA(KP773010453, TbT, TbS); Tc5 = FNMS(KP773010453, TbY, TbX); TbF = FMA(KP980785280, TbE, TbB); TbI = TbG - TbH; TbU = FNMS(KP773010453, TbT, TbS); TbZ = FMA(KP773010453, TbY, TbX); TbM = FMA(KP773010453, Tbv, Tbg); } { E TbV, Tc0, TbR, TbW; TbR = W[44]; TbV = TbR * TbU; Tc0 = TbR * TbZ; TbW = W[45]; cr[WS(rs, 23)] = FNMS(TbW, TbZ, TbV); ci[WS(rs, 23)] = FMA(TbW, TbU, Tc0); } { E Tc3, Tc6, Tc1, Tc4; Tc1 = W[108]; Tc3 = Tc1 * Tc2; Tc6 = Tc1 * Tc5; Tc4 = W[109]; cr[WS(rs, 55)] = FNMS(Tc4, Tc5, Tc3); ci[WS(rs, 55)] = FMA(Tc4, Tc2, Tc6); } { E TbJ, Tby, TbK, Tb5, Tbx; TbJ = FNMS(KP773010453, TbI, TbF); Tby = W[77]; TbK = Tby * Tbw; Tb5 = W[76]; Tbx = Tb5 * Tbw; cr[WS(rs, 39)] = FNMS(Tby, TbJ, Tbx); ci[WS(rs, 39)] = FMA(Tb5, TbJ, TbK); } { E TbP, TbO, TbQ, TbL, TbN; TbP = FMA(KP773010453, TbI, TbF); TbO = W[13]; TbQ = TbO * TbM; TbL = W[12]; TbN = TbL * TbM; cr[WS(rs, 7)] = FNMS(TbO, TbP, TbN); ci[WS(rs, 7)] = FMA(TbL, TbP, TbQ); } } { E Tay, Tb0, Tb3, TaD, TaG, TaS, TaX, TaK; { E TaB, TaC, TaV, TaE, TaF, TaR, Taq, TaQ, Tax, TaW; TaB = FMA(KP923879532, T9Q, T9N); TaC = T8V - T92; TaV = FNMS(KP831469612, TaC, TaB); TaE = FMA(KP303346683, Tar, Tas); TaF = FMA(KP303346683, Tau, Tav); TaR = TaE + TaF; { E Tao, Tap, Tat, Taw; Tao = FNMS(KP923879532, T8N, T8G); Tap = T9S + T9T; Taq = FMA(KP831469612, Tap, Tao); TaQ = FNMS(KP831469612, Tap, Tao); Tat = FNMS(KP303346683, Tas, Tar); Taw = FNMS(KP303346683, Tav, Tau); Tax = Tat + Taw; TaW = Tat - Taw; } Tay = FNMS(KP956940335, Tax, Taq); Tb0 = FMA(KP956940335, TaR, TaQ); Tb3 = FNMS(KP956940335, TaW, TaV); TaD = FMA(KP831469612, TaC, TaB); TaG = TaE - TaF; TaS = FNMS(KP956940335, TaR, TaQ); TaX = FMA(KP956940335, TaW, TaV); TaK = FMA(KP956940335, Tax, Taq); } { E TaT, TaY, TaP, TaU; TaP = W[36]; TaT = TaP * TaS; TaY = TaP * TaX; TaU = W[37]; cr[WS(rs, 19)] = FNMS(TaU, TaX, TaT); ci[WS(rs, 19)] = FMA(TaU, TaS, TaY); } { E Tb1, Tb4, TaZ, Tb2; TaZ = W[100]; Tb1 = TaZ * Tb0; Tb4 = TaZ * Tb3; Tb2 = W[101]; cr[WS(rs, 51)] = FNMS(Tb2, Tb3, Tb1); ci[WS(rs, 51)] = FMA(Tb2, Tb0, Tb4); } { E TaH, TaA, TaI, Tan, Taz; TaH = FNMS(KP956940335, TaG, TaD); TaA = W[69]; TaI = TaA * Tay; Tan = W[68]; Taz = Tan * Tay; cr[WS(rs, 35)] = FNMS(TaA, TaH, Taz); ci[WS(rs, 35)] = FMA(Tan, TaH, TaI); } { E TaN, TaM, TaO, TaJ, TaL; TaN = FMA(KP956940335, TaG, TaD); TaM = W[5]; TaO = TaM * TaK; TaJ = W[4]; TaL = TaJ * TaK; cr[WS(rs, 3)] = FNMS(TaM, TaN, TaL); ci[WS(rs, 3)] = FMA(TaJ, TaN, TaO); } } { E Tfg, TfI, TfL, Tfl, Tfo, TfA, TfF, Tfs; { E Tfj, Tfk, TfD, Tfm, Tfn, Tfz, Tf8, Tfy, Tff, TfE; Tfj = FNMS(KP707106781, Tey, Tev); Tfk = Tds + Tdh; TfD = FMA(KP923879532, Tfk, Tfj); Tfm = FMA(KP198912367, Tfc, Tfd); Tfn = FNMS(KP198912367, Tf9, Tfa); Tfz = Tfm + Tfn; { E Tf6, Tf7, Tfb, Tfe; Tf6 = FNMS(KP707106781, Td5, TcU); Tf7 = TeA + TeB; Tf8 = FNMS(KP923879532, Tf7, Tf6); Tfy = FMA(KP923879532, Tf7, Tf6); Tfb = FMA(KP198912367, Tfa, Tf9); Tfe = FNMS(KP198912367, Tfd, Tfc); Tff = Tfb - Tfe; TfE = Tfe + Tfb; } Tfg = FNMS(KP980785280, Tff, Tf8); TfI = FMA(KP980785280, Tfz, Tfy); TfL = FMA(KP980785280, TfE, TfD); Tfl = FNMS(KP923879532, Tfk, Tfj); Tfo = Tfm - Tfn; TfA = FNMS(KP980785280, Tfz, Tfy); TfF = FNMS(KP980785280, TfE, TfD); Tfs = FMA(KP980785280, Tff, Tf8); } { E TfB, TfG, Tfx, TfC; Tfx = W[58]; TfB = Tfx * TfA; TfG = Tfx * TfF; TfC = W[59]; cr[WS(rs, 30)] = FNMS(TfC, TfF, TfB); ci[WS(rs, 30)] = FMA(TfC, TfA, TfG); } { E TfJ, TfM, TfH, TfK; TfH = W[122]; TfJ = TfH * TfI; TfM = TfH * TfL; TfK = W[123]; cr[WS(rs, 62)] = FNMS(TfK, TfL, TfJ); ci[WS(rs, 62)] = FMA(TfK, TfI, TfM); } { E Tfp, Tfi, Tfq, Tf5, Tfh; Tfp = FNMS(KP980785280, Tfo, Tfl); Tfi = W[91]; Tfq = Tfi * Tfg; Tf5 = W[90]; Tfh = Tf5 * Tfg; cr[WS(rs, 46)] = FNMS(Tfi, Tfp, Tfh); ci[WS(rs, 46)] = FMA(Tf5, Tfp, Tfq); } { E Tfv, Tfu, Tfw, Tfr, Tft; Tfv = FMA(KP980785280, Tfo, Tfl); Tfu = W[27]; Tfw = Tfu * Tfs; Tfr = W[26]; Tft = Tfr * Tfs; cr[WS(rs, 14)] = FNMS(Tfu, Tfv, Tft); ci[WS(rs, 14)] = FMA(Tfr, Tfv, Tfw); } } { E T7k, T7Q, T7T, T7t, T7w, T7I, T7N, T7A; { E T7p, T7s, T7L, T7u, T7v, T7H, T74, T7G, T7j, T7M; T7p = FMA(KP923879532, T7o, T7n); T7s = T7q - T7r; T7L = FNMS(KP831469612, T7s, T7p); T7u = FMA(KP534511135, T77, T7a); T7v = FNMS(KP534511135, T7e, T7h); T7H = T7v - T7u; { E T6W, T73, T7b, T7i; T6W = FMA(KP923879532, T6V, T6U); T73 = T6Z - T72; T74 = FMA(KP831469612, T73, T6W); T7G = FNMS(KP831469612, T73, T6W); T7b = FNMS(KP534511135, T7a, T77); T7i = FMA(KP534511135, T7h, T7e); T7j = T7b + T7i; T7M = T7b - T7i; } T7k = FNMS(KP881921264, T7j, T74); T7Q = FMA(KP881921264, T7H, T7G); T7T = FMA(KP881921264, T7M, T7L); T7t = FMA(KP831469612, T7s, T7p); T7w = T7u + T7v; T7I = FNMS(KP881921264, T7H, T7G); T7N = FNMS(KP881921264, T7M, T7L); T7A = FMA(KP881921264, T7j, T74); } { E T7J, T7O, T7F, T7K; T7F = W[104]; T7J = T7F * T7I; T7O = T7F * T7N; T7K = W[105]; cr[WS(rs, 53)] = FNMS(T7K, T7N, T7J); ci[WS(rs, 53)] = FMA(T7K, T7I, T7O); } { E T7R, T7U, T7P, T7S; T7P = W[40]; T7R = T7P * T7Q; T7U = T7P * T7T; T7S = W[41]; cr[WS(rs, 21)] = FNMS(T7S, T7T, T7R); ci[WS(rs, 21)] = FMA(T7S, T7Q, T7U); } { E T7x, T7m, T7y, T6T, T7l; T7x = FNMS(KP881921264, T7w, T7t); T7m = W[73]; T7y = T7m * T7k; T6T = W[72]; T7l = T6T * T7k; cr[WS(rs, 37)] = FNMS(T7m, T7x, T7l); ci[WS(rs, 37)] = FMA(T6T, T7x, T7y); } { E T7D, T7C, T7E, T7z, T7B; T7D = FMA(KP881921264, T7w, T7t); T7C = W[9]; T7E = T7C * T7A; T7z = W[8]; T7B = T7z * T7A; cr[WS(rs, 5)] = FNMS(T7C, T7D, T7B); ci[WS(rs, 5)] = FMA(T7z, T7D, T7E); } } { E T86, T8u, T8y, T8f, T8i, T8q, T8t, T8l; { E T81, T84, T85, T89, T8a, T8b, T7Y, T8o, T8e, T8p; T81 = FMA(KP303346683, T80, T7Z); T84 = FNMS(KP303346683, T83, T82); T85 = T81 - T84; T89 = FNMS(KP923879532, T7o, T7n); T8a = T72 + T6Z; T8b = FNMS(KP831469612, T8a, T89); { E T7W, T7X, T8c, T8d; T7W = FNMS(KP923879532, T6V, T6U); T7X = T7q + T7r; T7Y = FNMS(KP831469612, T7X, T7W); T8o = FMA(KP831469612, T7X, T7W); T8c = FMA(KP303346683, T82, T83); T8d = FNMS(KP303346683, T7Z, T80); T8e = T8c - T8d; T8p = T8c + T8d; } T86 = FNMS(KP956940335, T85, T7Y); T8u = T84 + T81; T8y = FMA(KP956940335, T8p, T8o); T8f = FNMS(KP956940335, T8e, T8b); T8i = FMA(KP956940335, T85, T7Y); T8q = FNMS(KP956940335, T8p, T8o); T8t = FMA(KP831469612, T8a, T89); T8l = FMA(KP956940335, T8e, T8b); } { E T87, T8g, T7V, T88; T7V = W[88]; T87 = T7V * T86; T8g = T7V * T8f; T88 = W[89]; cr[WS(rs, 45)] = FNMS(T88, T8f, T87); ci[WS(rs, 45)] = FMA(T88, T86, T8g); } { E T8j, T8m, T8h, T8k; T8h = W[24]; T8j = T8h * T8i; T8m = T8h * T8l; T8k = W[25]; cr[WS(rs, 13)] = FNMS(T8k, T8l, T8j); ci[WS(rs, 13)] = FMA(T8k, T8i, T8m); } { E T8v, T8s, T8w, T8n, T8r; T8v = FNMS(KP956940335, T8u, T8t); T8s = W[57]; T8w = T8s * T8q; T8n = W[56]; T8r = T8n * T8q; cr[WS(rs, 29)] = FNMS(T8s, T8v, T8r); ci[WS(rs, 29)] = FMA(T8n, T8v, T8w); } { E T8B, T8A, T8C, T8x, T8z; T8B = FMA(KP956940335, T8u, T8t); T8A = W[121]; T8C = T8A * T8y; T8x = W[120]; T8z = T8x * T8y; cr[WS(rs, 61)] = FNMS(T8A, T8B, T8z); ci[WS(rs, 61)] = FMA(T8x, T8B, T8C); } } { E T9I, Tai, Tal, T9V, T9Y, Taa, Taf, Ta2; { E T9R, T9U, Tad, T9W, T9X, Ta9, T94, Ta8, T9H, Tae; T9R = FNMS(KP923879532, T9Q, T9N); T9U = T9S - T9T; Tad = FNMS(KP831469612, T9U, T9R); T9W = FMA(KP534511135, T9f, T9m); T9X = FMA(KP534511135, T9y, T9F); Ta9 = T9W + T9X; { E T8O, T93, T9n, T9G; T8O = FMA(KP923879532, T8N, T8G); T93 = T8V + T92; T94 = FNMS(KP831469612, T93, T8O); Ta8 = FMA(KP831469612, T93, T8O); T9n = FNMS(KP534511135, T9m, T9f); T9G = FNMS(KP534511135, T9F, T9y); T9H = T9n + T9G; Tae = T9G - T9n; } T9I = FMA(KP881921264, T9H, T94); Tai = FMA(KP881921264, Ta9, Ta8); Tal = FNMS(KP881921264, Tae, Tad); T9V = FMA(KP831469612, T9U, T9R); T9Y = T9W - T9X; Taa = FNMS(KP881921264, Ta9, Ta8); Taf = FMA(KP881921264, Tae, Tad); Ta2 = FNMS(KP881921264, T9H, T94); } { E Tab, Tag, Ta7, Tac; Ta7 = W[52]; Tab = Ta7 * Taa; Tag = Ta7 * Taf; Tac = W[53]; cr[WS(rs, 27)] = FNMS(Tac, Taf, Tab); ci[WS(rs, 27)] = FMA(Tac, Taa, Tag); } { E Taj, Tam, Tah, Tak; Tah = W[116]; Taj = Tah * Tai; Tam = Tah * Tal; Tak = W[117]; cr[WS(rs, 59)] = FNMS(Tak, Tal, Taj); ci[WS(rs, 59)] = FMA(Tak, Tai, Tam); } { E T9Z, T9K, Ta0, T8D, T9J; T9Z = FNMS(KP881921264, T9Y, T9V); T9K = W[85]; Ta0 = T9K * T9I; T8D = W[84]; T9J = T8D * T9I; cr[WS(rs, 43)] = FNMS(T9K, T9Z, T9J); ci[WS(rs, 43)] = FMA(T8D, T9Z, Ta0); } { E Ta5, Ta4, Ta6, Ta1, Ta3; Ta5 = FMA(KP881921264, T9Y, T9V); Ta4 = W[21]; Ta6 = Ta4 * Ta2; Ta1 = W[20]; Ta3 = Ta1 * Ta2; cr[WS(rs, 11)] = FNMS(Ta4, Ta5, Ta3); ci[WS(rs, 11)] = FMA(Ta1, Ta5, Ta6); } } { E Teo, Tf0, Tf3, TeD, TeG, TeS, TeX, TeK; { E Tez, TeC, TeV, TeE, TeF, TeR, Tdu, TeQ, Ten, TeW; Tez = FMA(KP707106781, Tey, Tev); TeC = TeA - TeB; TeV = FMA(KP923879532, TeC, Tez); TeE = FNMS(KP668178637, Tec, Tel); TeF = FMA(KP668178637, TdL, TdU); TeR = TeE + TeF; { E Td6, Tdt, TdV, Tem; Td6 = FMA(KP707106781, Td5, TcU); Tdt = Tdh - Tds; Tdu = FNMS(KP923879532, Tdt, Td6); TeQ = FMA(KP923879532, Tdt, Td6); TdV = FNMS(KP668178637, TdU, TdL); Tem = FMA(KP668178637, Tel, Tec); Ten = TdV - Tem; TeW = Tem + TdV; } Teo = FNMS(KP831469612, Ten, Tdu); Tf0 = FMA(KP831469612, TeR, TeQ); Tf3 = FMA(KP831469612, TeW, TeV); TeD = FNMS(KP923879532, TeC, Tez); TeG = TeE - TeF; TeS = FNMS(KP831469612, TeR, TeQ); TeX = FNMS(KP831469612, TeW, TeV); TeK = FMA(KP831469612, Ten, Tdu); } { E TeT, TeY, TeP, TeU; TeP = W[74]; TeT = TeP * TeS; TeY = TeP * TeX; TeU = W[75]; cr[WS(rs, 38)] = FNMS(TeU, TeX, TeT); ci[WS(rs, 38)] = FMA(TeU, TeS, TeY); } { E Tf1, Tf4, TeZ, Tf2; TeZ = W[10]; Tf1 = TeZ * Tf0; Tf4 = TeZ * Tf3; Tf2 = W[11]; cr[WS(rs, 6)] = FNMS(Tf2, Tf3, Tf1); ci[WS(rs, 6)] = FMA(Tf2, Tf0, Tf4); } { E TeH, Teq, TeI, TcP, Tep; TeH = FNMS(KP831469612, TeG, TeD); Teq = W[107]; TeI = Teq * Teo; TcP = W[106]; Tep = TcP * Teo; cr[WS(rs, 54)] = FNMS(Teq, TeH, Tep); ci[WS(rs, 54)] = FMA(TcP, TeH, TeI); } { E TeN, TeM, TeO, TeJ, TeL; TeN = FMA(KP831469612, TeG, TeD); TeM = W[43]; TeO = TeM * TeK; TeJ = W[42]; TeL = TeJ * TeK; cr[WS(rs, 22)] = FNMS(TeM, TeN, TeL); ci[WS(rs, 22)] = FMA(TeJ, TeN, TeO); } } { E Tci, TcK, TcN, Tcn, Tcq, TcC, TcH, Tcu; { E Tcl, Tcm, TcF, Tco, Tcp, TcB, Tca, TcA, Tch, TcG; Tcl = FNMS(KP923879532, TbA, Tbz); Tcm = Tbe - Tbb; TcF = FNMS(KP980785280, Tcm, Tcl); Tco = FMA(KP098491403, Tcb, Tcc); Tcp = FMA(KP098491403, Tce, Tcf); TcB = Tco + Tcp; { E Tc8, Tc9, Tcd, Tcg; Tc8 = FMA(KP923879532, Tb7, Tb6); Tc9 = TbC + TbD; Tca = FNMS(KP980785280, Tc9, Tc8); TcA = FMA(KP980785280, Tc9, Tc8); Tcd = FNMS(KP098491403, Tcc, Tcb); Tcg = FNMS(KP098491403, Tcf, Tce); Tch = Tcd + Tcg; TcG = Tcg - Tcd; } Tci = FMA(KP995184726, Tch, Tca); TcK = FMA(KP995184726, TcB, TcA); TcN = FNMS(KP995184726, TcG, TcF); Tcn = FMA(KP980785280, Tcm, Tcl); Tcq = Tco - Tcp; TcC = FNMS(KP995184726, TcB, TcA); TcH = FMA(KP995184726, TcG, TcF); Tcu = FNMS(KP995184726, Tch, Tca); } { E TcD, TcI, Tcz, TcE; Tcz = W[60]; TcD = Tcz * TcC; TcI = Tcz * TcH; TcE = W[61]; cr[WS(rs, 31)] = FNMS(TcE, TcH, TcD); ci[WS(rs, 31)] = FMA(TcE, TcC, TcI); } { E TcL, TcO, TcJ, TcM; TcJ = W[124]; TcL = TcJ * TcK; TcO = TcJ * TcN; TcM = W[125]; cr[WS(rs, 63)] = FNMS(TcM, TcN, TcL); ci[WS(rs, 63)] = FMA(TcM, TcK, TcO); } { E Tcr, Tck, Tcs, Tc7, Tcj; Tcr = FNMS(KP995184726, Tcq, Tcn); Tck = W[93]; Tcs = Tck * Tci; Tc7 = W[92]; Tcj = Tc7 * Tci; cr[WS(rs, 47)] = FNMS(Tck, Tcr, Tcj); ci[WS(rs, 47)] = FMA(Tc7, Tcr, Tcs); } { E Tcx, Tcw, Tcy, Tct, Tcv; Tcx = FMA(KP995184726, Tcq, Tcn); Tcw = W[29]; Tcy = Tcw * Tcu; Tct = W[28]; Tcv = Tct * Tcu; cr[WS(rs, 15)] = FNMS(Tcw, Tcx, Tcv); ci[WS(rs, 15)] = FMA(Tct, Tcx, Tcy); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 64}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 64, "hb_64", twinstr, &GENUS, {520, 126, 518, 0} }; void X(codelet_hb_64) (planner *p) { X(khc2hc_register) (p, hb_64, &desc); } #else /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 64 -dif -name hb_64 -include rdft/scalar/hb.h */ /* * This function contains 1038 FP additions, 500 FP multiplications, * (or, 808 additions, 270 multiplications, 230 fused multiply/add), * 196 stack variables, 15 constants, and 256 memory accesses */ #include "rdft/scalar/hb.h" static void hb_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { E Tf, T8C, Tfa, Thk, Tgg, ThM, T2c, T5O, T4K, T6g, Tag, TdE, TcA, Te6, T7P; E T94, TK, T7o, T38, T4P, Tfv, Thn, T5W, T6j, Tb0, TdK, Tfs, Tho, T8K, T97; E Tb7, TdL, TZ, T7l, T2P, T4Q, Tfo, Thq, T5T, T6k, TaH, TdH, Tfl, Thr, T8H; E T98, TaO, TdI, Tu, T95, Tfh, ThN, Tgj, Thl, T2v, T6h, T4N, T5P, Tav, Te7; E TcD, TdF, T7S, T8D, T1L, T20, T7A, T7D, T7G, T7H, T40, T62, Tg1, Thv, Tg8; E Thz, Tg5, Thw, T4t, T5Z, T4j, T60, T4w, T63, TbY, TdS, Tcd, TdQ, TfU, Thy; E T8P, T9z, T8S, T9A, Tcl, TdP, Tco, TdT, T1g, T1v, T7r, T7u, T7x, T7y, T3j; E T69, TfI, ThD, TfP, ThG, TfM, ThC, T3M, T66, T3C, T67, T3P, T6a, Tbl, TdZ; E TbA, TdX, TfB, ThF, T8W, T9C, T8Z, T9D, TbI, TdW, TbL, Te0; { E T3, Ta6, T6, Tcu, T4I, Ta7, T4F, Tcv, Td, Tcy, T27, Tae, Ta, Tcx, T2a; E Tab; { E T1, T2, T4D, T4E; T1 = cr[0]; T2 = ci[WS(rs, 31)]; T3 = T1 + T2; Ta6 = T1 - T2; { E T4, T5, T4G, T4H; T4 = cr[WS(rs, 16)]; T5 = ci[WS(rs, 15)]; T6 = T4 + T5; Tcu = T4 - T5; T4G = ci[WS(rs, 47)]; T4H = cr[WS(rs, 48)]; T4I = T4G - T4H; Ta7 = T4G + T4H; } T4D = ci[WS(rs, 63)]; T4E = cr[WS(rs, 32)]; T4F = T4D - T4E; Tcv = T4D + T4E; { E Tb, Tc, Tac, T25, T26, Tad; Tb = ci[WS(rs, 7)]; Tc = cr[WS(rs, 24)]; Tac = Tb - Tc; T25 = ci[WS(rs, 39)]; T26 = cr[WS(rs, 56)]; Tad = T25 + T26; Td = Tb + Tc; Tcy = Tac + Tad; T27 = T25 - T26; Tae = Tac - Tad; } { E T8, T9, Ta9, T28, T29, Taa; T8 = cr[WS(rs, 8)]; T9 = ci[WS(rs, 23)]; Ta9 = T8 - T9; T28 = ci[WS(rs, 55)]; T29 = cr[WS(rs, 40)]; Taa = T28 + T29; Ta = T8 + T9; Tcx = Ta9 + Taa; T2a = T28 - T29; Tab = Ta9 - Taa; } } { E T7, Te, Tf8, Tf9; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; T8C = T7 - Te; Tf8 = Ta6 + Ta7; Tf9 = KP707106781 * (Tcx + Tcy); Tfa = Tf8 - Tf9; Thk = Tf8 + Tf9; } { E Tge, Tgf, T24, T2b; Tge = Tcv - Tcu; Tgf = KP707106781 * (Tab - Tae); Tgg = Tge + Tgf; ThM = Tge - Tgf; T24 = T3 - T6; T2b = T27 - T2a; T2c = T24 + T2b; T5O = T24 - T2b; } { E T4C, T4J, Ta8, Taf; T4C = Ta - Td; T4J = T4F - T4I; T4K = T4C + T4J; T6g = T4J - T4C; Ta8 = Ta6 - Ta7; Taf = KP707106781 * (Tab + Tae); Tag = Ta8 - Taf; TdE = Ta8 + Taf; } { E Tcw, Tcz, T7N, T7O; Tcw = Tcu + Tcv; Tcz = KP707106781 * (Tcx - Tcy); TcA = Tcw - Tcz; Te6 = Tcw + Tcz; T7N = T4F + T4I; T7O = T2a + T27; T7P = T7N + T7O; T94 = T7N - T7O; } } { E TC, Tb1, T2Z, TaQ, T2X, Tb2, T7m, TaR, TJ, Tb4, Tb5, T2Q, T36, TaV, TaY; E T7n, Tfq, Tfr; { E Tw, Tx, Ty, Tz, TA, TB; Tw = cr[WS(rs, 2)]; Tx = ci[WS(rs, 29)]; Ty = Tw + Tx; Tz = cr[WS(rs, 18)]; TA = ci[WS(rs, 13)]; TB = Tz + TA; TC = Ty + TB; Tb1 = Tz - TA; T2Z = Ty - TB; TaQ = Tw - Tx; } { E T2R, T2S, T2T, T2U, T2V, T2W; T2R = ci[WS(rs, 61)]; T2S = cr[WS(rs, 34)]; T2T = T2R - T2S; T2U = ci[WS(rs, 45)]; T2V = cr[WS(rs, 50)]; T2W = T2U - T2V; T2X = T2T - T2W; Tb2 = T2R + T2S; T7m = T2T + T2W; TaR = T2U + T2V; } { E TF, TaT, T35, TaU, TI, TaW, T32, TaX; { E TD, TE, T33, T34; TD = cr[WS(rs, 10)]; TE = ci[WS(rs, 21)]; TF = TD + TE; TaT = TD - TE; T33 = ci[WS(rs, 53)]; T34 = cr[WS(rs, 42)]; T35 = T33 - T34; TaU = T33 + T34; } { E TG, TH, T30, T31; TG = ci[WS(rs, 5)]; TH = cr[WS(rs, 26)]; TI = TG + TH; TaW = TG - TH; T30 = ci[WS(rs, 37)]; T31 = cr[WS(rs, 58)]; T32 = T30 - T31; TaX = T30 + T31; } TJ = TF + TI; Tb4 = TaT + TaU; Tb5 = TaW + TaX; T2Q = TF - TI; T36 = T32 - T35; TaV = TaT - TaU; TaY = TaW - TaX; T7n = T35 + T32; } TK = TC + TJ; T7o = T7m + T7n; { E T2Y, T37, Tft, Tfu; T2Y = T2Q + T2X; T37 = T2Z + T36; T38 = FMA(KP923879532, T2Y, KP382683432 * T37); T4P = FNMS(KP382683432, T2Y, KP923879532 * T37); Tft = TaQ + TaR; Tfu = KP707106781 * (Tb4 + Tb5); Tfv = Tft - Tfu; Thn = Tft + Tfu; } { E T5U, T5V, TaS, TaZ; T5U = T2X - T2Q; T5V = T2Z - T36; T5W = FMA(KP382683432, T5U, KP923879532 * T5V); T6j = FNMS(KP923879532, T5U, KP382683432 * T5V); TaS = TaQ - TaR; TaZ = KP707106781 * (TaV + TaY); Tb0 = TaS - TaZ; TdK = TaS + TaZ; } Tfq = Tb2 - Tb1; Tfr = KP707106781 * (TaV - TaY); Tfs = Tfq + Tfr; Tho = Tfq - Tfr; { E T8I, T8J, Tb3, Tb6; T8I = TC - TJ; T8J = T7m - T7n; T8K = T8I + T8J; T97 = T8I - T8J; Tb3 = Tb1 + Tb2; Tb6 = KP707106781 * (Tb4 - Tb5); Tb7 = Tb3 - Tb6; TdL = Tb3 + Tb6; } } { E TR, TaI, T2G, Tax, T2E, TaJ, T7j, Tay, TY, TaL, TaM, T2x, T2N, TaC, TaF; E T7k, Tfj, Tfk; { E TL, TM, TN, TO, TP, TQ; TL = ci[WS(rs, 1)]; TM = cr[WS(rs, 30)]; TN = TL + TM; TO = cr[WS(rs, 14)]; TP = ci[WS(rs, 17)]; TQ = TO + TP; TR = TN + TQ; TaI = TL - TM; T2G = TN - TQ; Tax = TO - TP; } { E T2y, T2z, T2A, T2B, T2C, T2D; T2y = ci[WS(rs, 33)]; T2z = cr[WS(rs, 62)]; T2A = T2y - T2z; T2B = ci[WS(rs, 49)]; T2C = cr[WS(rs, 46)]; T2D = T2B - T2C; T2E = T2A - T2D; TaJ = T2B + T2C; T7j = T2A + T2D; Tay = T2y + T2z; } { E TU, TaA, T2M, TaB, TX, TaD, T2J, TaE; { E TS, TT, T2K, T2L; TS = cr[WS(rs, 6)]; TT = ci[WS(rs, 25)]; TU = TS + TT; TaA = TS - TT; T2K = ci[WS(rs, 57)]; T2L = cr[WS(rs, 38)]; T2M = T2K - T2L; TaB = T2K + T2L; } { E TV, TW, T2H, T2I; TV = ci[WS(rs, 9)]; TW = cr[WS(rs, 22)]; TX = TV + TW; TaD = TV - TW; T2H = ci[WS(rs, 41)]; T2I = cr[WS(rs, 54)]; T2J = T2H - T2I; TaE = T2H + T2I; } TY = TU + TX; TaL = TaA - TaB; TaM = TaD - TaE; T2x = TU - TX; T2N = T2J - T2M; TaC = TaA + TaB; TaF = TaD + TaE; T7k = T2M + T2J; } TZ = TR + TY; T7l = T7j + T7k; { E T2F, T2O, Tfm, Tfn; T2F = T2x + T2E; T2O = T2G + T2N; T2P = FNMS(KP382683432, T2O, KP923879532 * T2F); T4Q = FMA(KP382683432, T2F, KP923879532 * T2O); Tfm = TaI + TaJ; Tfn = KP707106781 * (TaC + TaF); Tfo = Tfm - Tfn; Thq = Tfm + Tfn; } { E T5R, T5S, Taz, TaG; T5R = T2E - T2x; T5S = T2G - T2N; T5T = FNMS(KP923879532, T5S, KP382683432 * T5R); T6k = FMA(KP923879532, T5R, KP382683432 * T5S); Taz = Tax - Tay; TaG = KP707106781 * (TaC - TaF); TaH = Taz - TaG; TdH = Taz + TaG; } Tfj = KP707106781 * (TaL - TaM); Tfk = Tax + Tay; Tfl = Tfj - Tfk; Thr = Tfk + Tfj; { E T8F, T8G, TaK, TaN; T8F = T7j - T7k; T8G = TR - TY; T8H = T8F - T8G; T98 = T8G + T8F; TaK = TaI - TaJ; TaN = KP707106781 * (TaL + TaM); TaO = TaK - TaN; TdI = TaK + TaN; } } { E Ti, T2j, Tl, T2g, T2d, T2k, Tfc, Tfb, Tat, Taq, Tp, T2s, Ts, T2p, T2m; E T2t, Tff, Tfe, Tam, Taj; { E Tar, Tas, Tao, Tap; { E Tg, Th, T2h, T2i; Tg = cr[WS(rs, 4)]; Th = ci[WS(rs, 27)]; Ti = Tg + Th; Tar = Tg - Th; T2h = ci[WS(rs, 43)]; T2i = cr[WS(rs, 52)]; T2j = T2h - T2i; Tas = T2h + T2i; } { E Tj, Tk, T2e, T2f; Tj = cr[WS(rs, 20)]; Tk = ci[WS(rs, 11)]; Tl = Tj + Tk; Tao = Tj - Tk; T2e = ci[WS(rs, 59)]; T2f = cr[WS(rs, 36)]; T2g = T2e - T2f; Tap = T2e + T2f; } T2d = Ti - Tl; T2k = T2g - T2j; Tfc = Tap - Tao; Tfb = Tar + Tas; Tat = Tar - Tas; Taq = Tao + Tap; } { E Tak, Tal, Tah, Tai; { E Tn, To, T2q, T2r; Tn = ci[WS(rs, 3)]; To = cr[WS(rs, 28)]; Tp = Tn + To; Tak = Tn - To; T2q = ci[WS(rs, 51)]; T2r = cr[WS(rs, 44)]; T2s = T2q - T2r; Tal = T2q + T2r; } { E Tq, Tr, T2n, T2o; Tq = cr[WS(rs, 12)]; Tr = ci[WS(rs, 19)]; Ts = Tq + Tr; Tah = Tq - Tr; T2n = ci[WS(rs, 35)]; T2o = cr[WS(rs, 60)]; T2p = T2n - T2o; Tai = T2n + T2o; } T2m = Tp - Ts; T2t = T2p - T2s; Tff = Tah + Tai; Tfe = Tak + Tal; Tam = Tak - Tal; Taj = Tah - Tai; } { E Tm, Tt, Tfd, Tfg; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; T95 = Tm - Tt; Tfd = FNMS(KP923879532, Tfc, KP382683432 * Tfb); Tfg = FNMS(KP923879532, Tff, KP382683432 * Tfe); Tfh = Tfd + Tfg; ThN = Tfd - Tfg; } { E Tgh, Tgi, T2l, T2u; Tgh = FMA(KP382683432, Tfc, KP923879532 * Tfb); Tgi = FMA(KP382683432, Tff, KP923879532 * Tfe); Tgj = Tgh - Tgi; Thl = Tgh + Tgi; T2l = T2d - T2k; T2u = T2m + T2t; T2v = KP707106781 * (T2l + T2u); T6h = KP707106781 * (T2l - T2u); } { E T4L, T4M, Tan, Tau; T4L = T2d + T2k; T4M = T2t - T2m; T4N = KP707106781 * (T4L + T4M); T5P = KP707106781 * (T4M - T4L); Tan = FNMS(KP382683432, Tam, KP923879532 * Taj); Tau = FMA(KP923879532, Taq, KP382683432 * Tat); Tav = Tan - Tau; Te7 = Tau + Tan; } { E TcB, TcC, T7Q, T7R; TcB = FNMS(KP382683432, Taq, KP923879532 * Tat); TcC = FMA(KP382683432, Taj, KP923879532 * Tam); TcD = TcB - TcC; TdF = TcB + TcC; T7Q = T2g + T2j; T7R = T2p + T2s; T7S = T7Q + T7R; T8D = T7R - T7Q; } } { E T1z, T1C, T1D, Tcf, TbO, T4o, T4r, T7B, Tcg, TbP, T1G, T3Y, T1J, T3V, T1K; E T7C, Tcj, Tci, TbW, TbT, T1S, TfV, TfW, T41, T48, Tc8, Tcb, T7E, T1Z, TfY; E TfZ, T4a, T4h, Tc1, Tc4, T7F; { E T1x, T1y, T1A, T1B; T1x = ci[0]; T1y = cr[WS(rs, 31)]; T1z = T1x + T1y; T1A = cr[WS(rs, 15)]; T1B = ci[WS(rs, 16)]; T1C = T1A + T1B; T1D = T1z + T1C; Tcf = T1A - T1B; TbO = T1x - T1y; } { E T4m, T4n, T4p, T4q; T4m = ci[WS(rs, 32)]; T4n = cr[WS(rs, 63)]; T4o = T4m - T4n; T4p = ci[WS(rs, 48)]; T4q = cr[WS(rs, 47)]; T4r = T4p - T4q; T7B = T4o + T4r; Tcg = T4m + T4n; TbP = T4p + T4q; } { E TbR, TbS, TbU, TbV; { E T1E, T1F, T3W, T3X; T1E = cr[WS(rs, 7)]; T1F = ci[WS(rs, 24)]; T1G = T1E + T1F; TbR = T1E - T1F; T3W = ci[WS(rs, 56)]; T3X = cr[WS(rs, 39)]; T3Y = T3W - T3X; TbS = T3W + T3X; } { E T1H, T1I, T3T, T3U; T1H = ci[WS(rs, 8)]; T1I = cr[WS(rs, 23)]; T1J = T1H + T1I; TbU = T1H - T1I; T3T = ci[WS(rs, 40)]; T3U = cr[WS(rs, 55)]; T3V = T3T - T3U; TbV = T3T + T3U; } T1K = T1G + T1J; T7C = T3Y + T3V; Tcj = TbU + TbV; Tci = TbR + TbS; TbW = TbU - TbV; TbT = TbR - TbS; } { E T1O, Tc9, T47, Tca, T1R, Tc6, T44, Tc7; { E T1M, T1N, T45, T46; T1M = cr[WS(rs, 3)]; T1N = ci[WS(rs, 28)]; T1O = T1M + T1N; Tc9 = T1M - T1N; T45 = ci[WS(rs, 44)]; T46 = cr[WS(rs, 51)]; T47 = T45 - T46; Tca = T45 + T46; } { E T1P, T1Q, T42, T43; T1P = cr[WS(rs, 19)]; T1Q = ci[WS(rs, 12)]; T1R = T1P + T1Q; Tc6 = T1P - T1Q; T42 = ci[WS(rs, 60)]; T43 = cr[WS(rs, 35)]; T44 = T42 - T43; Tc7 = T42 + T43; } T1S = T1O + T1R; TfV = Tc9 + Tca; TfW = Tc7 - Tc6; T41 = T1O - T1R; T48 = T44 - T47; Tc8 = Tc6 + Tc7; Tcb = Tc9 - Tca; T7E = T44 + T47; } { E T1V, Tc2, T4g, Tc3, T1Y, TbZ, T4d, Tc0; { E T1T, T1U, T4e, T4f; T1T = ci[WS(rs, 4)]; T1U = cr[WS(rs, 27)]; T1V = T1T + T1U; Tc2 = T1T - T1U; T4e = ci[WS(rs, 52)]; T4f = cr[WS(rs, 43)]; T4g = T4e - T4f; Tc3 = T4e + T4f; } { E T1W, T1X, T4b, T4c; T1W = cr[WS(rs, 11)]; T1X = ci[WS(rs, 20)]; T1Y = T1W + T1X; TbZ = T1W - T1X; T4b = ci[WS(rs, 36)]; T4c = cr[WS(rs, 59)]; T4d = T4b - T4c; Tc0 = T4b + T4c; } T1Z = T1V + T1Y; TfY = Tc2 + Tc3; TfZ = TbZ + Tc0; T4a = T1V - T1Y; T4h = T4d - T4g; Tc1 = TbZ - Tc0; Tc4 = Tc2 - Tc3; T7F = T4d + T4g; } T1L = T1D + T1K; T20 = T1S + T1Z; T7A = T1L - T20; T7D = T7B + T7C; T7G = T7E + T7F; T7H = T7D - T7G; { E T3S, T3Z, TfX, Tg0; T3S = T1z - T1C; T3Z = T3V - T3Y; T40 = T3S + T3Z; T62 = T3S - T3Z; TfX = FNMS(KP923879532, TfW, KP382683432 * TfV); Tg0 = FNMS(KP923879532, TfZ, KP382683432 * TfY); Tg1 = TfX + Tg0; Thv = TfX - Tg0; } { E Tg6, Tg7, Tg3, Tg4; Tg6 = FMA(KP382683432, TfW, KP923879532 * TfV); Tg7 = FMA(KP382683432, TfZ, KP923879532 * TfY); Tg8 = Tg6 - Tg7; Thz = Tg6 + Tg7; Tg3 = KP707106781 * (TbT - TbW); Tg4 = Tcf + Tcg; Tg5 = Tg3 - Tg4; Thw = Tg4 + Tg3; } { E T4l, T4s, T49, T4i; T4l = T1G - T1J; T4s = T4o - T4r; T4t = T4l + T4s; T5Z = T4s - T4l; T49 = T41 - T48; T4i = T4a + T4h; T4j = KP707106781 * (T49 + T4i); T60 = KP707106781 * (T49 - T4i); } { E T4u, T4v, TbQ, TbX; T4u = T41 + T48; T4v = T4h - T4a; T4w = KP707106781 * (T4u + T4v); T63 = KP707106781 * (T4v - T4u); TbQ = TbO - TbP; TbX = KP707106781 * (TbT + TbW); TbY = TbQ - TbX; TdS = TbQ + TbX; } { E Tc5, Tcc, TfS, TfT; Tc5 = FNMS(KP382683432, Tc4, KP923879532 * Tc1); Tcc = FMA(KP923879532, Tc8, KP382683432 * Tcb); Tcd = Tc5 - Tcc; TdQ = Tcc + Tc5; TfS = TbO + TbP; TfT = KP707106781 * (Tci + Tcj); TfU = TfS - TfT; Thy = TfS + TfT; } { E T8N, T8O, T8Q, T8R; T8N = T7B - T7C; T8O = T1S - T1Z; T8P = T8N - T8O; T9z = T8O + T8N; T8Q = T1D - T1K; T8R = T7F - T7E; T8S = T8Q - T8R; T9A = T8Q + T8R; } { E Tch, Tck, Tcm, Tcn; Tch = Tcf - Tcg; Tck = KP707106781 * (Tci - Tcj); Tcl = Tch - Tck; TdP = Tch + Tck; Tcm = FNMS(KP382683432, Tc8, KP923879532 * Tcb); Tcn = FMA(KP382683432, Tc1, KP923879532 * Tc4); Tco = Tcm - Tcn; TdT = Tcm + Tcn; } } { E T14, T17, T18, TbC, Tbb, T3H, T3K, T7s, TbD, Tbc, T1b, T3h, T1e, T3e, T1f; E T7t, TbG, TbF, Tbj, Tbg, T1n, TfC, TfD, T3k, T3r, Tbv, Tby, T7v, T1u, TfF; E TfG, T3t, T3A, Tbo, Tbr, T7w; { E T12, T13, T15, T16; T12 = cr[WS(rs, 1)]; T13 = ci[WS(rs, 30)]; T14 = T12 + T13; T15 = cr[WS(rs, 17)]; T16 = ci[WS(rs, 14)]; T17 = T15 + T16; T18 = T14 + T17; TbC = T15 - T16; Tbb = T12 - T13; } { E T3F, T3G, T3I, T3J; T3F = ci[WS(rs, 62)]; T3G = cr[WS(rs, 33)]; T3H = T3F - T3G; T3I = ci[WS(rs, 46)]; T3J = cr[WS(rs, 49)]; T3K = T3I - T3J; T7s = T3H + T3K; TbD = T3F + T3G; Tbc = T3I + T3J; } { E Tbe, Tbf, Tbh, Tbi; { E T19, T1a, T3f, T3g; T19 = cr[WS(rs, 9)]; T1a = ci[WS(rs, 22)]; T1b = T19 + T1a; Tbe = T19 - T1a; T3f = ci[WS(rs, 54)]; T3g = cr[WS(rs, 41)]; T3h = T3f - T3g; Tbf = T3f + T3g; } { E T1c, T1d, T3c, T3d; T1c = ci[WS(rs, 6)]; T1d = cr[WS(rs, 25)]; T1e = T1c + T1d; Tbh = T1c - T1d; T3c = ci[WS(rs, 38)]; T3d = cr[WS(rs, 57)]; T3e = T3c - T3d; Tbi = T3c + T3d; } T1f = T1b + T1e; T7t = T3h + T3e; TbG = Tbh + Tbi; TbF = Tbe + Tbf; Tbj = Tbh - Tbi; Tbg = Tbe - Tbf; } { E T1j, Tbw, T3q, Tbx, T1m, Tbt, T3n, Tbu; { E T1h, T1i, T3o, T3p; T1h = cr[WS(rs, 5)]; T1i = ci[WS(rs, 26)]; T1j = T1h + T1i; Tbw = T1h - T1i; T3o = ci[WS(rs, 42)]; T3p = cr[WS(rs, 53)]; T3q = T3o - T3p; Tbx = T3o + T3p; } { E T1k, T1l, T3l, T3m; T1k = cr[WS(rs, 21)]; T1l = ci[WS(rs, 10)]; T1m = T1k + T1l; Tbt = T1k - T1l; T3l = ci[WS(rs, 58)]; T3m = cr[WS(rs, 37)]; T3n = T3l - T3m; Tbu = T3l + T3m; } T1n = T1j + T1m; TfC = Tbw + Tbx; TfD = Tbu - Tbt; T3k = T1j - T1m; T3r = T3n - T3q; Tbv = Tbt + Tbu; Tby = Tbw - Tbx; T7v = T3n + T3q; } { E T1q, Tbp, T3z, Tbq, T1t, Tbm, T3w, Tbn; { E T1o, T1p, T3x, T3y; T1o = ci[WS(rs, 2)]; T1p = cr[WS(rs, 29)]; T1q = T1o + T1p; Tbp = T1o - T1p; T3x = ci[WS(rs, 50)]; T3y = cr[WS(rs, 45)]; T3z = T3x - T3y; Tbq = T3x + T3y; } { E T1r, T1s, T3u, T3v; T1r = cr[WS(rs, 13)]; T1s = ci[WS(rs, 18)]; T1t = T1r + T1s; Tbm = T1r - T1s; T3u = ci[WS(rs, 34)]; T3v = cr[WS(rs, 61)]; T3w = T3u - T3v; Tbn = T3u + T3v; } T1u = T1q + T1t; TfF = Tbp + Tbq; TfG = Tbm + Tbn; T3t = T1q - T1t; T3A = T3w - T3z; Tbo = Tbm - Tbn; Tbr = Tbp - Tbq; T7w = T3w + T3z; } T1g = T18 + T1f; T1v = T1n + T1u; T7r = T1g - T1v; T7u = T7s + T7t; T7x = T7v + T7w; T7y = T7u - T7x; { E T3b, T3i, TfE, TfH; T3b = T14 - T17; T3i = T3e - T3h; T3j = T3b + T3i; T69 = T3b - T3i; TfE = FNMS(KP923879532, TfD, KP382683432 * TfC); TfH = FNMS(KP923879532, TfG, KP382683432 * TfF); TfI = TfE + TfH; ThD = TfE - TfH; } { E TfN, TfO, TfK, TfL; TfN = FMA(KP382683432, TfD, KP923879532 * TfC); TfO = FMA(KP382683432, TfG, KP923879532 * TfF); TfP = TfN - TfO; ThG = TfN + TfO; TfK = TbD - TbC; TfL = KP707106781 * (Tbg - Tbj); TfM = TfK + TfL; ThC = TfK - TfL; } { E T3E, T3L, T3s, T3B; T3E = T1b - T1e; T3L = T3H - T3K; T3M = T3E + T3L; T66 = T3L - T3E; T3s = T3k - T3r; T3B = T3t + T3A; T3C = KP707106781 * (T3s + T3B); T67 = KP707106781 * (T3s - T3B); } { E T3N, T3O, Tbd, Tbk; T3N = T3k + T3r; T3O = T3A - T3t; T3P = KP707106781 * (T3N + T3O); T6a = KP707106781 * (T3O - T3N); Tbd = Tbb - Tbc; Tbk = KP707106781 * (Tbg + Tbj); Tbl = Tbd - Tbk; TdZ = Tbd + Tbk; } { E Tbs, Tbz, Tfz, TfA; Tbs = FNMS(KP382683432, Tbr, KP923879532 * Tbo); Tbz = FMA(KP923879532, Tbv, KP382683432 * Tby); TbA = Tbs - Tbz; TdX = Tbz + Tbs; Tfz = Tbb + Tbc; TfA = KP707106781 * (TbF + TbG); TfB = Tfz - TfA; ThF = Tfz + TfA; } { E T8U, T8V, T8X, T8Y; T8U = T7s - T7t; T8V = T1n - T1u; T8W = T8U - T8V; T9C = T8V + T8U; T8X = T18 - T1f; T8Y = T7w - T7v; T8Z = T8X - T8Y; T9D = T8X + T8Y; } { E TbE, TbH, TbJ, TbK; TbE = TbC + TbD; TbH = KP707106781 * (TbF - TbG); TbI = TbE - TbH; TdW = TbE + TbH; TbJ = FNMS(KP382683432, Tbv, KP923879532 * Tby); TbK = FMA(KP382683432, Tbo, KP923879532 * Tbr); TbL = TbJ - TbK; Te0 = TbJ + TbK; } } { E T11, T8q, T8n, T8r, T22, T8v, T8k, T8u; { E Tv, T10, T8l, T8m; Tv = Tf + Tu; T10 = TK + TZ; T11 = Tv + T10; T8q = Tv - T10; T8l = T7u + T7x; T8m = T7D + T7G; T8n = T8l + T8m; T8r = T8m - T8l; } { E T1w, T21, T8i, T8j; T1w = T1g + T1v; T21 = T1L + T20; T22 = T1w + T21; T8v = T1w - T21; T8i = T7P + T7S; T8j = T7o + T7l; T8k = T8i + T8j; T8u = T8i - T8j; } cr[0] = T11 + T22; ci[0] = T8k + T8n; { E T8g, T8o, T8f, T8h; T8g = T11 - T22; T8o = T8k - T8n; T8f = W[62]; T8h = W[63]; cr[WS(rs, 32)] = FNMS(T8h, T8o, T8f * T8g); ci[WS(rs, 32)] = FMA(T8h, T8g, T8f * T8o); } { E T8s, T8w, T8p, T8t; T8s = T8q - T8r; T8w = T8u - T8v; T8p = W[94]; T8t = W[95]; cr[WS(rs, 48)] = FNMS(T8t, T8w, T8p * T8s); ci[WS(rs, 48)] = FMA(T8p, T8w, T8t * T8s); } { E T8y, T8A, T8x, T8z; T8y = T8q + T8r; T8A = T8v + T8u; T8x = W[30]; T8z = W[31]; cr[WS(rs, 16)] = FNMS(T8z, T8A, T8x * T8y); ci[WS(rs, 16)] = FMA(T8x, T8A, T8z * T8y); } } { E T9y, T9U, T9N, T9V, T9F, T9Z, T9K, T9Y; { E T9w, T9x, T9L, T9M; T9w = T8C + T8D; T9x = KP707106781 * (T97 + T98); T9y = T9w - T9x; T9U = T9w + T9x; T9L = FNMS(KP382683432, T9C, KP923879532 * T9D); T9M = FMA(KP382683432, T9z, KP923879532 * T9A); T9N = T9L - T9M; T9V = T9L + T9M; } { E T9B, T9E, T9I, T9J; T9B = FNMS(KP382683432, T9A, KP923879532 * T9z); T9E = FMA(KP923879532, T9C, KP382683432 * T9D); T9F = T9B - T9E; T9Z = T9E + T9B; T9I = T95 + T94; T9J = KP707106781 * (T8K + T8H); T9K = T9I - T9J; T9Y = T9I + T9J; } { E T9G, T9O, T9v, T9H; T9G = T9y - T9F; T9O = T9K - T9N; T9v = W[102]; T9H = W[103]; cr[WS(rs, 52)] = FNMS(T9H, T9O, T9v * T9G); ci[WS(rs, 52)] = FMA(T9H, T9G, T9v * T9O); } { E Ta2, Ta4, Ta1, Ta3; Ta2 = T9U + T9V; Ta4 = T9Y + T9Z; Ta1 = W[6]; Ta3 = W[7]; cr[WS(rs, 4)] = FNMS(Ta3, Ta4, Ta1 * Ta2); ci[WS(rs, 4)] = FMA(Ta1, Ta4, Ta3 * Ta2); } { E T9Q, T9S, T9P, T9R; T9Q = T9y + T9F; T9S = T9K + T9N; T9P = W[38]; T9R = W[39]; cr[WS(rs, 20)] = FNMS(T9R, T9S, T9P * T9Q); ci[WS(rs, 20)] = FMA(T9R, T9Q, T9P * T9S); } { E T9W, Ta0, T9T, T9X; T9W = T9U - T9V; Ta0 = T9Y - T9Z; T9T = W[70]; T9X = W[71]; cr[WS(rs, 36)] = FNMS(T9X, Ta0, T9T * T9W); ci[WS(rs, 36)] = FMA(T9T, Ta0, T9X * T9W); } } { E T8M, T9k, T9d, T9l, T91, T9p, T9a, T9o; { E T8E, T8L, T9b, T9c; T8E = T8C - T8D; T8L = KP707106781 * (T8H - T8K); T8M = T8E - T8L; T9k = T8E + T8L; T9b = FNMS(KP923879532, T8W, KP382683432 * T8Z); T9c = FMA(KP923879532, T8P, KP382683432 * T8S); T9d = T9b - T9c; T9l = T9b + T9c; } { E T8T, T90, T96, T99; T8T = FNMS(KP923879532, T8S, KP382683432 * T8P); T90 = FMA(KP382683432, T8W, KP923879532 * T8Z); T91 = T8T - T90; T9p = T90 + T8T; T96 = T94 - T95; T99 = KP707106781 * (T97 - T98); T9a = T96 - T99; T9o = T96 + T99; } { E T92, T9e, T8B, T93; T92 = T8M - T91; T9e = T9a - T9d; T8B = W[118]; T93 = W[119]; cr[WS(rs, 60)] = FNMS(T93, T9e, T8B * T92); ci[WS(rs, 60)] = FMA(T93, T92, T8B * T9e); } { E T9s, T9u, T9r, T9t; T9s = T9k + T9l; T9u = T9o + T9p; T9r = W[22]; T9t = W[23]; cr[WS(rs, 12)] = FNMS(T9t, T9u, T9r * T9s); ci[WS(rs, 12)] = FMA(T9r, T9u, T9t * T9s); } { E T9g, T9i, T9f, T9h; T9g = T8M + T91; T9i = T9a + T9d; T9f = W[54]; T9h = W[55]; cr[WS(rs, 28)] = FNMS(T9h, T9i, T9f * T9g); ci[WS(rs, 28)] = FMA(T9h, T9g, T9f * T9i); } { E T9m, T9q, T9j, T9n; T9m = T9k - T9l; T9q = T9o - T9p; T9j = W[86]; T9n = W[87]; cr[WS(rs, 44)] = FNMS(T9n, T9q, T9j * T9m); ci[WS(rs, 44)] = FMA(T9j, T9q, T9n * T9m); } } { E T7q, T84, T7X, T85, T7J, T89, T7U, T88; { E T7i, T7p, T7V, T7W; T7i = Tf - Tu; T7p = T7l - T7o; T7q = T7i + T7p; T84 = T7i - T7p; T7V = T7r + T7y; T7W = T7H - T7A; T7X = KP707106781 * (T7V + T7W); T85 = KP707106781 * (T7W - T7V); } { E T7z, T7I, T7M, T7T; T7z = T7r - T7y; T7I = T7A + T7H; T7J = KP707106781 * (T7z + T7I); T89 = KP707106781 * (T7z - T7I); T7M = TK - TZ; T7T = T7P - T7S; T7U = T7M + T7T; T88 = T7T - T7M; } { E T7K, T7Y, T7h, T7L; T7K = T7q - T7J; T7Y = T7U - T7X; T7h = W[78]; T7L = W[79]; cr[WS(rs, 40)] = FNMS(T7L, T7Y, T7h * T7K); ci[WS(rs, 40)] = FMA(T7L, T7K, T7h * T7Y); } { E T8c, T8e, T8b, T8d; T8c = T84 + T85; T8e = T88 + T89; T8b = W[46]; T8d = W[47]; cr[WS(rs, 24)] = FNMS(T8d, T8e, T8b * T8c); ci[WS(rs, 24)] = FMA(T8b, T8e, T8d * T8c); } { E T80, T82, T7Z, T81; T80 = T7q + T7J; T82 = T7U + T7X; T7Z = W[14]; T81 = W[15]; cr[WS(rs, 8)] = FNMS(T81, T82, T7Z * T80); ci[WS(rs, 8)] = FMA(T81, T80, T7Z * T82); } { E T86, T8a, T83, T87; T86 = T84 - T85; T8a = T88 - T89; T83 = W[110]; T87 = W[111]; cr[WS(rs, 56)] = FNMS(T87, T8a, T83 * T86); ci[WS(rs, 56)] = FMA(T83, T8a, T87 * T86); } } { E T6K, T76, T6W, T7a, T6R, T7b, T6Z, T77; { E T6I, T6J, T6U, T6V; T6I = T5O + T5P; T6J = T6j + T6k; T6K = T6I - T6J; T76 = T6I + T6J; T6U = T6g + T6h; T6V = T5W + T5T; T6W = T6U - T6V; T7a = T6U + T6V; { E T6N, T6Y, T6Q, T6X; { E T6L, T6M, T6O, T6P; T6L = T5Z + T60; T6M = T62 + T63; T6N = FNMS(KP555570233, T6M, KP831469612 * T6L); T6Y = FMA(KP555570233, T6L, KP831469612 * T6M); T6O = T66 + T67; T6P = T69 + T6a; T6Q = FMA(KP831469612, T6O, KP555570233 * T6P); T6X = FNMS(KP555570233, T6O, KP831469612 * T6P); } T6R = T6N - T6Q; T7b = T6Q + T6N; T6Z = T6X - T6Y; T77 = T6X + T6Y; } } { E T6S, T70, T6H, T6T; T6S = T6K - T6R; T70 = T6W - T6Z; T6H = W[106]; T6T = W[107]; cr[WS(rs, 54)] = FNMS(T6T, T70, T6H * T6S); ci[WS(rs, 54)] = FMA(T6T, T6S, T6H * T70); } { E T7e, T7g, T7d, T7f; T7e = T76 + T77; T7g = T7a + T7b; T7d = W[10]; T7f = W[11]; cr[WS(rs, 6)] = FNMS(T7f, T7g, T7d * T7e); ci[WS(rs, 6)] = FMA(T7d, T7g, T7f * T7e); } { E T72, T74, T71, T73; T72 = T6K + T6R; T74 = T6W + T6Z; T71 = W[42]; T73 = W[43]; cr[WS(rs, 22)] = FNMS(T73, T74, T71 * T72); ci[WS(rs, 22)] = FMA(T73, T72, T71 * T74); } { E T78, T7c, T75, T79; T78 = T76 - T77; T7c = T7a - T7b; T75 = W[74]; T79 = W[75]; cr[WS(rs, 38)] = FNMS(T79, T7c, T75 * T78); ci[WS(rs, 38)] = FMA(T75, T7c, T79 * T78); } } { E T3a, T52, T4S, T56, T4z, T57, T4V, T53; { E T2w, T39, T4O, T4R; T2w = T2c - T2v; T39 = T2P - T38; T3a = T2w + T39; T52 = T2w - T39; T4O = T4K - T4N; T4R = T4P - T4Q; T4S = T4O + T4R; T56 = T4O - T4R; { E T3R, T4T, T4y, T4U; { E T3D, T3Q, T4k, T4x; T3D = T3j - T3C; T3Q = T3M - T3P; T3R = FNMS(KP831469612, T3Q, KP555570233 * T3D); T4T = FMA(KP831469612, T3D, KP555570233 * T3Q); T4k = T40 - T4j; T4x = T4t - T4w; T4y = FMA(KP555570233, T4k, KP831469612 * T4x); T4U = FNMS(KP831469612, T4k, KP555570233 * T4x); } T4z = T3R + T4y; T57 = T3R - T4y; T4V = T4T + T4U; T53 = T4U - T4T; } } { E T4A, T4W, T23, T4B; T4A = T3a - T4z; T4W = T4S - T4V; T23 = W[82]; T4B = W[83]; cr[WS(rs, 42)] = FNMS(T4B, T4W, T23 * T4A); ci[WS(rs, 42)] = FMA(T4B, T4A, T23 * T4W); } { E T5a, T5c, T59, T5b; T5a = T52 + T53; T5c = T56 + T57; T59 = W[50]; T5b = W[51]; cr[WS(rs, 26)] = FNMS(T5b, T5c, T59 * T5a); ci[WS(rs, 26)] = FMA(T59, T5c, T5b * T5a); } { E T4Y, T50, T4X, T4Z; T4Y = T3a + T4z; T50 = T4S + T4V; T4X = W[18]; T4Z = W[19]; cr[WS(rs, 10)] = FNMS(T4Z, T50, T4X * T4Y); ci[WS(rs, 10)] = FMA(T4Z, T4Y, T4X * T50); } { E T54, T58, T51, T55; T54 = T52 - T53; T58 = T56 - T57; T51 = W[114]; T55 = W[115]; cr[WS(rs, 58)] = FNMS(T55, T58, T51 * T54); ci[WS(rs, 58)] = FMA(T51, T58, T55 * T54); } } { E T5g, T5C, T5s, T5G, T5n, T5H, T5v, T5D; { E T5e, T5f, T5q, T5r; T5e = T2c + T2v; T5f = T4P + T4Q; T5g = T5e + T5f; T5C = T5e - T5f; T5q = T4K + T4N; T5r = T38 + T2P; T5s = T5q + T5r; T5G = T5q - T5r; { E T5j, T5t, T5m, T5u; { E T5h, T5i, T5k, T5l; T5h = T3j + T3C; T5i = T3M + T3P; T5j = FNMS(KP195090322, T5i, KP980785280 * T5h); T5t = FMA(KP195090322, T5h, KP980785280 * T5i); T5k = T40 + T4j; T5l = T4t + T4w; T5m = FMA(KP980785280, T5k, KP195090322 * T5l); T5u = FNMS(KP195090322, T5k, KP980785280 * T5l); } T5n = T5j + T5m; T5H = T5j - T5m; T5v = T5t + T5u; T5D = T5u - T5t; } } { E T5o, T5w, T5d, T5p; T5o = T5g - T5n; T5w = T5s - T5v; T5d = W[66]; T5p = W[67]; cr[WS(rs, 34)] = FNMS(T5p, T5w, T5d * T5o); ci[WS(rs, 34)] = FMA(T5p, T5o, T5d * T5w); } { E T5K, T5M, T5J, T5L; T5K = T5C + T5D; T5M = T5G + T5H; T5J = W[34]; T5L = W[35]; cr[WS(rs, 18)] = FNMS(T5L, T5M, T5J * T5K); ci[WS(rs, 18)] = FMA(T5J, T5M, T5L * T5K); } { E T5y, T5A, T5x, T5z; T5y = T5g + T5n; T5A = T5s + T5v; T5x = W[2]; T5z = W[3]; cr[WS(rs, 2)] = FNMS(T5z, T5A, T5x * T5y); ci[WS(rs, 2)] = FMA(T5z, T5y, T5x * T5A); } { E T5E, T5I, T5B, T5F; T5E = T5C - T5D; T5I = T5G - T5H; T5B = W[98]; T5F = W[99]; cr[WS(rs, 50)] = FNMS(T5F, T5I, T5B * T5E); ci[WS(rs, 50)] = FMA(T5B, T5I, T5F * T5E); } } { E T5Y, T6w, T6m, T6A, T6d, T6B, T6p, T6x; { E T5Q, T5X, T6i, T6l; T5Q = T5O - T5P; T5X = T5T - T5W; T5Y = T5Q - T5X; T6w = T5Q + T5X; T6i = T6g - T6h; T6l = T6j - T6k; T6m = T6i - T6l; T6A = T6i + T6l; { E T65, T6o, T6c, T6n; { E T61, T64, T68, T6b; T61 = T5Z - T60; T64 = T62 - T63; T65 = FNMS(KP980785280, T64, KP195090322 * T61); T6o = FMA(KP980785280, T61, KP195090322 * T64); T68 = T66 - T67; T6b = T69 - T6a; T6c = FMA(KP195090322, T68, KP980785280 * T6b); T6n = FNMS(KP980785280, T68, KP195090322 * T6b); } T6d = T65 - T6c; T6B = T6c + T65; T6p = T6n - T6o; T6x = T6n + T6o; } } { E T6e, T6q, T5N, T6f; T6e = T5Y - T6d; T6q = T6m - T6p; T5N = W[122]; T6f = W[123]; cr[WS(rs, 62)] = FNMS(T6f, T6q, T5N * T6e); ci[WS(rs, 62)] = FMA(T6f, T6e, T5N * T6q); } { E T6E, T6G, T6D, T6F; T6E = T6w + T6x; T6G = T6A + T6B; T6D = W[26]; T6F = W[27]; cr[WS(rs, 14)] = FNMS(T6F, T6G, T6D * T6E); ci[WS(rs, 14)] = FMA(T6D, T6G, T6F * T6E); } { E T6s, T6u, T6r, T6t; T6s = T5Y + T6d; T6u = T6m + T6p; T6r = W[58]; T6t = W[59]; cr[WS(rs, 30)] = FNMS(T6t, T6u, T6r * T6s); ci[WS(rs, 30)] = FMA(T6t, T6s, T6r * T6u); } { E T6y, T6C, T6v, T6z; T6y = T6w - T6x; T6C = T6A - T6B; T6v = W[90]; T6z = W[91]; cr[WS(rs, 46)] = FNMS(T6z, T6C, T6v * T6y); ci[WS(rs, 46)] = FMA(T6v, T6C, T6z * T6y); } } { E Tba, Tdw, TcS, Tdi, TcI, Tds, TcW, Td6, Tcr, TcX, TcL, TcT, Tdd, Tdx, Tdl; E Tdt; { E Taw, Tdg, Tb9, Tdh, TaP, Tb8; Taw = Tag - Tav; Tdg = TcA + TcD; TaP = FNMS(KP831469612, TaO, KP555570233 * TaH); Tb8 = FMA(KP831469612, Tb0, KP555570233 * Tb7); Tb9 = TaP - Tb8; Tdh = Tb8 + TaP; Tba = Taw + Tb9; Tdw = Tdg - Tdh; TcS = Taw - Tb9; Tdi = Tdg + Tdh; } { E TcE, Td4, TcH, Td5, TcF, TcG; TcE = TcA - TcD; Td4 = Tag + Tav; TcF = FNMS(KP831469612, Tb7, KP555570233 * Tb0); TcG = FMA(KP555570233, TaO, KP831469612 * TaH); TcH = TcF - TcG; Td5 = TcF + TcG; TcI = TcE + TcH; Tds = Td4 - Td5; TcW = TcE - TcH; Td6 = Td4 + Td5; } { E TbN, TcJ, Tcq, TcK; { E TbB, TbM, Tce, Tcp; TbB = Tbl - TbA; TbM = TbI - TbL; TbN = FNMS(KP956940335, TbM, KP290284677 * TbB); TcJ = FMA(KP956940335, TbB, KP290284677 * TbM); Tce = TbY - Tcd; Tcp = Tcl - Tco; Tcq = FMA(KP290284677, Tce, KP956940335 * Tcp); TcK = FNMS(KP956940335, Tce, KP290284677 * Tcp); } Tcr = TbN + Tcq; TcX = TbN - Tcq; TcL = TcJ + TcK; TcT = TcK - TcJ; } { E Td9, Tdj, Tdc, Tdk; { E Td7, Td8, Tda, Tdb; Td7 = Tbl + TbA; Td8 = TbI + TbL; Td9 = FNMS(KP471396736, Td8, KP881921264 * Td7); Tdj = FMA(KP471396736, Td7, KP881921264 * Td8); Tda = TbY + Tcd; Tdb = Tcl + Tco; Tdc = FMA(KP881921264, Tda, KP471396736 * Tdb); Tdk = FNMS(KP471396736, Tda, KP881921264 * Tdb); } Tdd = Td9 + Tdc; Tdx = Td9 - Tdc; Tdl = Tdj + Tdk; Tdt = Tdk - Tdj; } { E Tcs, TcM, Ta5, Tct; Tcs = Tba - Tcr; TcM = TcI - TcL; Ta5 = W[88]; Tct = W[89]; cr[WS(rs, 45)] = FNMS(Tct, TcM, Ta5 * Tcs); ci[WS(rs, 45)] = FMA(Tct, Tcs, Ta5 * TcM); } { E Tdu, Tdy, Tdr, Tdv; Tdu = Tds - Tdt; Tdy = Tdw - Tdx; Tdr = W[104]; Tdv = W[105]; cr[WS(rs, 53)] = FNMS(Tdv, Tdy, Tdr * Tdu); ci[WS(rs, 53)] = FMA(Tdr, Tdy, Tdv * Tdu); } { E TdA, TdC, Tdz, TdB; TdA = Tds + Tdt; TdC = Tdw + Tdx; Tdz = W[40]; TdB = W[41]; cr[WS(rs, 21)] = FNMS(TdB, TdC, Tdz * TdA); ci[WS(rs, 21)] = FMA(Tdz, TdC, TdB * TdA); } { E TcO, TcQ, TcN, TcP; TcO = Tba + Tcr; TcQ = TcI + TcL; TcN = W[24]; TcP = W[25]; cr[WS(rs, 13)] = FNMS(TcP, TcQ, TcN * TcO); ci[WS(rs, 13)] = FMA(TcP, TcO, TcN * TcQ); } { E TcU, TcY, TcR, TcV; TcU = TcS - TcT; TcY = TcW - TcX; TcR = W[120]; TcV = W[121]; cr[WS(rs, 61)] = FNMS(TcV, TcY, TcR * TcU); ci[WS(rs, 61)] = FMA(TcR, TcY, TcV * TcU); } { E Tde, Tdm, Td3, Tdf; Tde = Td6 - Tdd; Tdm = Tdi - Tdl; Td3 = W[72]; Tdf = W[73]; cr[WS(rs, 37)] = FNMS(Tdf, Tdm, Td3 * Tde); ci[WS(rs, 37)] = FMA(Tdf, Tde, Td3 * Tdm); } { E Tdo, Tdq, Tdn, Tdp; Tdo = Td6 + Tdd; Tdq = Tdi + Tdl; Tdn = W[8]; Tdp = W[9]; cr[WS(rs, 5)] = FNMS(Tdp, Tdq, Tdn * Tdo); ci[WS(rs, 5)] = FMA(Tdp, Tdo, Tdn * Tdq); } { E Td0, Td2, TcZ, Td1; Td0 = TcS + TcT; Td2 = TcW + TcX; TcZ = W[56]; Td1 = W[57]; cr[WS(rs, 29)] = FNMS(Td1, Td2, TcZ * Td0); ci[WS(rs, 29)] = FMA(TcZ, Td2, Td1 * Td0); } } { E Tfy, Thc, Tgy, TgY, Tgo, Th8, TgC, TgM, Tgb, TgD, Tgr, Tgz, TgT, Thd, Th1; E Th9; { E Tfi, TgW, Tfx, TgX, Tfp, Tfw; Tfi = Tfa - Tfh; TgW = Tgg + Tgj; Tfp = FNMS(KP555570233, Tfo, KP831469612 * Tfl); Tfw = FMA(KP831469612, Tfs, KP555570233 * Tfv); Tfx = Tfp - Tfw; TgX = Tfw + Tfp; Tfy = Tfi + Tfx; Thc = TgW - TgX; Tgy = Tfi - Tfx; TgY = TgW + TgX; } { E Tgk, TgK, Tgn, TgL, Tgl, Tgm; Tgk = Tgg - Tgj; TgK = Tfa + Tfh; Tgl = FNMS(KP555570233, Tfs, KP831469612 * Tfv); Tgm = FMA(KP555570233, Tfl, KP831469612 * Tfo); Tgn = Tgl - Tgm; TgL = Tgl + Tgm; Tgo = Tgk + Tgn; Th8 = TgK - TgL; TgC = Tgk - Tgn; TgM = TgK + TgL; } { E TfR, Tgp, Tga, Tgq; { E TfJ, TfQ, Tg2, Tg9; TfJ = TfB - TfI; TfQ = TfM - TfP; TfR = FNMS(KP881921264, TfQ, KP471396736 * TfJ); Tgp = FMA(KP881921264, TfJ, KP471396736 * TfQ); Tg2 = TfU - Tg1; Tg9 = Tg5 - Tg8; Tga = FMA(KP471396736, Tg2, KP881921264 * Tg9); Tgq = FNMS(KP881921264, Tg2, KP471396736 * Tg9); } Tgb = TfR + Tga; TgD = TfR - Tga; Tgr = Tgp + Tgq; Tgz = Tgq - Tgp; } { E TgP, TgZ, TgS, Th0; { E TgN, TgO, TgQ, TgR; TgN = TfB + TfI; TgO = TfM + TfP; TgP = FNMS(KP290284677, TgO, KP956940335 * TgN); TgZ = FMA(KP290284677, TgN, KP956940335 * TgO); TgQ = TfU + Tg1; TgR = Tg5 + Tg8; TgS = FMA(KP956940335, TgQ, KP290284677 * TgR); Th0 = FNMS(KP290284677, TgQ, KP956940335 * TgR); } TgT = TgP + TgS; Thd = TgP - TgS; Th1 = TgZ + Th0; Th9 = Th0 - TgZ; } { E Tgc, Tgs, Tf7, Tgd; Tgc = Tfy - Tgb; Tgs = Tgo - Tgr; Tf7 = W[84]; Tgd = W[85]; cr[WS(rs, 43)] = FNMS(Tgd, Tgs, Tf7 * Tgc); ci[WS(rs, 43)] = FMA(Tgd, Tgc, Tf7 * Tgs); } { E Tha, The, Th7, Thb; Tha = Th8 - Th9; The = Thc - Thd; Th7 = W[100]; Thb = W[101]; cr[WS(rs, 51)] = FNMS(Thb, The, Th7 * Tha); ci[WS(rs, 51)] = FMA(Th7, The, Thb * Tha); } { E Thg, Thi, Thf, Thh; Thg = Th8 + Th9; Thi = Thc + Thd; Thf = W[36]; Thh = W[37]; cr[WS(rs, 19)] = FNMS(Thh, Thi, Thf * Thg); ci[WS(rs, 19)] = FMA(Thf, Thi, Thh * Thg); } { E Tgu, Tgw, Tgt, Tgv; Tgu = Tfy + Tgb; Tgw = Tgo + Tgr; Tgt = W[20]; Tgv = W[21]; cr[WS(rs, 11)] = FNMS(Tgv, Tgw, Tgt * Tgu); ci[WS(rs, 11)] = FMA(Tgv, Tgu, Tgt * Tgw); } { E TgA, TgE, Tgx, TgB; TgA = Tgy - Tgz; TgE = TgC - TgD; Tgx = W[116]; TgB = W[117]; cr[WS(rs, 59)] = FNMS(TgB, TgE, Tgx * TgA); ci[WS(rs, 59)] = FMA(Tgx, TgE, TgB * TgA); } { E TgU, Th2, TgJ, TgV; TgU = TgM - TgT; Th2 = TgY - Th1; TgJ = W[68]; TgV = W[69]; cr[WS(rs, 35)] = FNMS(TgV, Th2, TgJ * TgU); ci[WS(rs, 35)] = FMA(TgV, TgU, TgJ * Th2); } { E Th4, Th6, Th3, Th5; Th4 = TgM + TgT; Th6 = TgY + Th1; Th3 = W[4]; Th5 = W[5]; cr[WS(rs, 3)] = FNMS(Th5, Th6, Th3 * Th4); ci[WS(rs, 3)] = FMA(Th5, Th4, Th3 * Th6); } { E TgG, TgI, TgF, TgH; TgG = Tgy + Tgz; TgI = TgC + TgD; TgF = W[52]; TgH = W[53]; cr[WS(rs, 27)] = FNMS(TgH, TgI, TgF * TgG); ci[WS(rs, 27)] = FMA(TgF, TgI, TgH * TgG); } } { E TdO, Tf0, Tem, TeM, Tec, TeW, Teq, TeA, Te3, Ter, Tef, Ten, TeH, Tf1, TeP; E TeX; { E TdG, TeK, TdN, TeL, TdJ, TdM; TdG = TdE - TdF; TeK = Te6 + Te7; TdJ = FNMS(KP195090322, TdI, KP980785280 * TdH); TdM = FMA(KP195090322, TdK, KP980785280 * TdL); TdN = TdJ - TdM; TeL = TdM + TdJ; TdO = TdG - TdN; Tf0 = TeK + TeL; Tem = TdG + TdN; TeM = TeK - TeL; } { E Te8, Tey, Teb, Tez, Te9, Tea; Te8 = Te6 - Te7; Tey = TdE + TdF; Te9 = FNMS(KP195090322, TdL, KP980785280 * TdK); Tea = FMA(KP980785280, TdI, KP195090322 * TdH); Teb = Te9 - Tea; Tez = Te9 + Tea; Tec = Te8 - Teb; TeW = Tey + Tez; Teq = Te8 + Teb; TeA = Tey - Tez; } { E TdV, Tee, Te2, Ted; { E TdR, TdU, TdY, Te1; TdR = TdP - TdQ; TdU = TdS - TdT; TdV = FNMS(KP773010453, TdU, KP634393284 * TdR); Tee = FMA(KP773010453, TdR, KP634393284 * TdU); TdY = TdW - TdX; Te1 = TdZ - Te0; Te2 = FMA(KP634393284, TdY, KP773010453 * Te1); Ted = FNMS(KP773010453, TdY, KP634393284 * Te1); } Te3 = TdV - Te2; Ter = Te2 + TdV; Tef = Ted - Tee; Ten = Ted + Tee; } { E TeD, TeO, TeG, TeN; { E TeB, TeC, TeE, TeF; TeB = TdP + TdQ; TeC = TdS + TdT; TeD = FNMS(KP098017140, TeC, KP995184726 * TeB); TeO = FMA(KP098017140, TeB, KP995184726 * TeC); TeE = TdW + TdX; TeF = TdZ + Te0; TeG = FMA(KP995184726, TeE, KP098017140 * TeF); TeN = FNMS(KP098017140, TeE, KP995184726 * TeF); } TeH = TeD - TeG; Tf1 = TeG + TeD; TeP = TeN - TeO; TeX = TeN + TeO; } { E Te4, Teg, TdD, Te5; Te4 = TdO - Te3; Teg = Tec - Tef; TdD = W[112]; Te5 = W[113]; cr[WS(rs, 57)] = FNMS(Te5, Teg, TdD * Te4); ci[WS(rs, 57)] = FMA(Te5, Te4, TdD * Teg); } { E TeY, Tf2, TeV, TeZ; TeY = TeW - TeX; Tf2 = Tf0 - Tf1; TeV = W[64]; TeZ = W[65]; cr[WS(rs, 33)] = FNMS(TeZ, Tf2, TeV * TeY); ci[WS(rs, 33)] = FMA(TeV, Tf2, TeZ * TeY); } { E Tf4, Tf6, Tf3, Tf5; Tf4 = TeW + TeX; Tf6 = Tf0 + Tf1; Tf3 = W[0]; Tf5 = W[1]; cr[WS(rs, 1)] = FNMS(Tf5, Tf6, Tf3 * Tf4); ci[WS(rs, 1)] = FMA(Tf3, Tf6, Tf5 * Tf4); } { E Tei, Tek, Teh, Tej; Tei = TdO + Te3; Tek = Tec + Tef; Teh = W[48]; Tej = W[49]; cr[WS(rs, 25)] = FNMS(Tej, Tek, Teh * Tei); ci[WS(rs, 25)] = FMA(Tej, Tei, Teh * Tek); } { E Teo, Tes, Tel, Tep; Teo = Tem - Ten; Tes = Teq - Ter; Tel = W[80]; Tep = W[81]; cr[WS(rs, 41)] = FNMS(Tep, Tes, Tel * Teo); ci[WS(rs, 41)] = FMA(Tel, Tes, Tep * Teo); } { E TeI, TeQ, Tex, TeJ; TeI = TeA - TeH; TeQ = TeM - TeP; Tex = W[96]; TeJ = W[97]; cr[WS(rs, 49)] = FNMS(TeJ, TeQ, Tex * TeI); ci[WS(rs, 49)] = FMA(TeJ, TeI, Tex * TeQ); } { E TeS, TeU, TeR, TeT; TeS = TeA + TeH; TeU = TeM + TeP; TeR = W[32]; TeT = W[33]; cr[WS(rs, 17)] = FNMS(TeT, TeU, TeR * TeS); ci[WS(rs, 17)] = FMA(TeT, TeS, TeR * TeU); } { E Teu, Tew, Tet, Tev; Teu = Tem + Ten; Tew = Teq + Ter; Tet = W[16]; Tev = W[17]; cr[WS(rs, 9)] = FNMS(Tev, Tew, Tet * Teu); ci[WS(rs, 9)] = FMA(Tet, Tew, Tev * Teu); } } { E Thu, TiG, Ti2, Tis, ThS, TiC, Ti6, Tig, ThJ, Ti7, ThV, Ti3, Tin, TiH, Tiv; E TiD; { E Thm, Tiq, Tht, Tir, Thp, Ths; Thm = Thk - Thl; Tiq = ThM - ThN; Thp = FNMS(KP980785280, Tho, KP195090322 * Thn); Ths = FNMS(KP980785280, Thr, KP195090322 * Thq); Tht = Thp + Ths; Tir = Thp - Ths; Thu = Thm - Tht; TiG = Tiq - Tir; Ti2 = Thm + Tht; Tis = Tiq + Tir; } { E ThO, Tie, ThR, Tif, ThP, ThQ; ThO = ThM + ThN; Tie = Thk + Thl; ThP = FMA(KP195090322, Tho, KP980785280 * Thn); ThQ = FMA(KP195090322, Thr, KP980785280 * Thq); ThR = ThP - ThQ; Tif = ThP + ThQ; ThS = ThO - ThR; TiC = Tie + Tif; Ti6 = ThO + ThR; Tig = Tie - Tif; } { E ThB, ThU, ThI, ThT; { E Thx, ThA, ThE, ThH; Thx = Thv - Thw; ThA = Thy - Thz; ThB = FNMS(KP634393284, ThA, KP773010453 * Thx); ThU = FMA(KP634393284, Thx, KP773010453 * ThA); ThE = ThC + ThD; ThH = ThF - ThG; ThI = FMA(KP773010453, ThE, KP634393284 * ThH); ThT = FNMS(KP634393284, ThE, KP773010453 * ThH); } ThJ = ThB - ThI; Ti7 = ThI + ThB; ThV = ThT - ThU; Ti3 = ThT + ThU; } { E Tij, Tit, Tim, Tiu; { E Tih, Tii, Tik, Til; Tih = ThF + ThG; Tii = ThC - ThD; Tij = FNMS(KP995184726, Tii, KP098017140 * Tih); Tit = FMA(KP098017140, Tii, KP995184726 * Tih); Tik = Thy + Thz; Til = Thw + Thv; Tim = FNMS(KP995184726, Til, KP098017140 * Tik); Tiu = FMA(KP098017140, Til, KP995184726 * Tik); } Tin = Tij + Tim; TiH = Tij - Tim; Tiv = Tit - Tiu; TiD = Tit + Tiu; } { E ThK, ThW, Thj, ThL; ThK = Thu - ThJ; ThW = ThS - ThV; Thj = W[108]; ThL = W[109]; cr[WS(rs, 55)] = FNMS(ThL, ThW, Thj * ThK); ci[WS(rs, 55)] = FMA(ThL, ThK, Thj * ThW); } { E TiE, TiI, TiB, TiF; TiE = TiC - TiD; TiI = TiG + TiH; TiB = W[60]; TiF = W[61]; cr[WS(rs, 31)] = FNMS(TiF, TiI, TiB * TiE); ci[WS(rs, 31)] = FMA(TiB, TiI, TiF * TiE); } { E TiK, TiM, TiJ, TiL; TiK = TiC + TiD; TiM = TiG - TiH; TiJ = W[124]; TiL = W[125]; cr[WS(rs, 63)] = FNMS(TiL, TiM, TiJ * TiK); ci[WS(rs, 63)] = FMA(TiJ, TiM, TiL * TiK); } { E ThY, Ti0, ThX, ThZ; ThY = Thu + ThJ; Ti0 = ThS + ThV; ThX = W[44]; ThZ = W[45]; cr[WS(rs, 23)] = FNMS(ThZ, Ti0, ThX * ThY); ci[WS(rs, 23)] = FMA(ThZ, ThY, ThX * Ti0); } { E Ti4, Ti8, Ti1, Ti5; Ti4 = Ti2 - Ti3; Ti8 = Ti6 - Ti7; Ti1 = W[76]; Ti5 = W[77]; cr[WS(rs, 39)] = FNMS(Ti5, Ti8, Ti1 * Ti4); ci[WS(rs, 39)] = FMA(Ti1, Ti8, Ti5 * Ti4); } { E Tio, Tiw, Tid, Tip; Tio = Tig - Tin; Tiw = Tis - Tiv; Tid = W[92]; Tip = W[93]; cr[WS(rs, 47)] = FNMS(Tip, Tiw, Tid * Tio); ci[WS(rs, 47)] = FMA(Tip, Tio, Tid * Tiw); } { E Tiy, TiA, Tix, Tiz; Tiy = Tig + Tin; TiA = Tis + Tiv; Tix = W[28]; Tiz = W[29]; cr[WS(rs, 15)] = FNMS(Tiz, TiA, Tix * Tiy); ci[WS(rs, 15)] = FMA(Tiz, Tiy, Tix * TiA); } { E Tia, Tic, Ti9, Tib; Tia = Ti2 + Ti3; Tic = Ti6 + Ti7; Ti9 = W[12]; Tib = W[13]; cr[WS(rs, 7)] = FNMS(Tib, Tic, Ti9 * Tia); ci[WS(rs, 7)] = FMA(Ti9, Tic, Tib * Tia); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 64}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 64, "hb_64", twinstr, &GENUS, {808, 270, 230, 0} }; void X(codelet_hb_64) (planner *p) { X(khc2hc_register) (p, hb_64, &desc); } #endif