/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:32 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */ /* * This function contains 96 FP additions, 88 FP multiplications, * (or, 24 additions, 16 multiplications, 72 fused multiply/add), * 53 stack variables, 10 constants, and 36 memory accesses */ #include "rdft/scalar/hb.h" static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP954188894, +0.954188894138671133499268364187245676532219158); DK(KP852868531, +0.852868531952443209628250963940074071936020296); DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP492403876, +0.492403876506104029683371512294761506835321626); DK(KP777861913, +0.777861913430206160028177977318626690410586096); DK(KP839099631, +0.839099631177280011763127298123181364687434283); DK(KP176326980, +0.176326980708464973471090386868618986121633062); DK(KP363970234, +0.363970234266202361351047882776834043890471784); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, Tw, Tz, T1E, T1L, T1B, T1K, T14; E T1d, TX, T1c; { E T1, Th, T4, T1a, Tk, TP, TO, T19; T1 = cr[0]; Th = ci[WS(rs, 8)]; { E T2, T3, Ti, Tj; T2 = cr[WS(rs, 3)]; T3 = ci[WS(rs, 2)]; T4 = T2 + T3; T1a = T2 - T3; Ti = ci[WS(rs, 5)]; Tj = cr[WS(rs, 6)]; Tk = Ti - Tj; TP = Ti + Tj; } T5 = T1 + T4; Tl = Th + Tk; TO = FNMS(KP500000000, T4, T1); TQ = FNMS(KP866025403, TP, TO); T1y = FMA(KP866025403, TP, TO); T19 = FNMS(KP500000000, Tk, Th); T1b = FMA(KP866025403, T1a, T19); T1J = FNMS(KP866025403, T1a, T19); } { E T6, T9, TY, T12, Tm, Tp, TZ, T11, Tb, Te, TS, TU, Tr, Tu, TR; E TV; { E T7, T8, Tn, To; T6 = cr[WS(rs, 1)]; T7 = cr[WS(rs, 4)]; T8 = ci[WS(rs, 1)]; T9 = T7 + T8; TY = FNMS(KP500000000, T9, T6); T12 = T7 - T8; Tm = ci[WS(rs, 7)]; Tn = ci[WS(rs, 4)]; To = cr[WS(rs, 7)]; Tp = Tn - To; TZ = Tn + To; T11 = FMS(KP500000000, Tp, Tm); } { E Tc, Td, Ts, Tt; Tb = cr[WS(rs, 2)]; Tc = ci[WS(rs, 3)]; Td = ci[0]; Te = Tc + Td; TS = Td - Tc; TU = FNMS(KP500000000, Te, Tb); Tr = ci[WS(rs, 6)]; Ts = cr[WS(rs, 5)]; Tt = cr[WS(rs, 8)]; Tu = Ts + Tt; TR = FMA(KP500000000, Tu, Tr); TV = Ts - Tt; } { E Ta, Tf, T1z, T1A; Ta = T6 + T9; Tf = Tb + Te; Tg = Ta + Tf; TE = Ta - Tf; { E Tq, Tv, T1C, T1D; Tq = Tm + Tp; Tv = Tr - Tu; Tw = Tq + Tv; Tz = Tv - Tq; T1C = FNMS(KP866025403, TV, TU); T1D = FMA(KP866025403, TS, TR); T1E = FMA(KP363970234, T1D, T1C); T1L = FNMS(KP363970234, T1C, T1D); } T1z = FMA(KP866025403, T12, T11); T1A = FMA(KP866025403, TZ, TY); T1B = FMA(KP176326980, T1A, T1z); T1K = FNMS(KP176326980, T1z, T1A); { E T10, T13, TT, TW; T10 = FNMS(KP866025403, TZ, TY); T13 = FNMS(KP866025403, T12, T11); T14 = FMA(KP839099631, T13, T10); T1d = FNMS(KP839099631, T10, T13); TT = FNMS(KP866025403, TS, TR); TW = FMA(KP866025403, TV, TU); TX = FNMS(KP176326980, TW, TT); T1c = FMA(KP176326980, TT, TW); } } } cr[0] = T5 + Tg; ci[0] = Tl + Tw; { E TA, TI, TF, TL, Ty, TD; Ty = FNMS(KP500000000, Tg, T5); TA = FNMS(KP866025403, Tz, Ty); TI = FMA(KP866025403, Tz, Ty); TD = FNMS(KP500000000, Tw, Tl); TF = FNMS(KP866025403, TE, TD); TL = FMA(KP866025403, TE, TD); { E TB, TG, Tx, TC; Tx = W[10]; TB = Tx * TA; TG = Tx * TF; TC = W[11]; cr[WS(rs, 6)] = FNMS(TC, TF, TB); ci[WS(rs, 6)] = FMA(TC, TA, TG); } { E TJ, TM, TH, TK; TH = W[4]; TJ = TH * TI; TM = TH * TL; TK = W[5]; cr[WS(rs, 3)] = FNMS(TK, TL, TJ); ci[WS(rs, 3)] = FMA(TK, TI, TM); } } { E T16, T1s, T1k, T1f, T1v, T1p; { E T1j, T15, T1i, T1o, T1e, T1n; T1j = FMA(KP777861913, T1d, T1c); T15 = FNMS(KP777861913, T14, TX); T1i = FMA(KP492403876, T15, TQ); T16 = FNMS(KP984807753, T15, TQ); T1s = FMA(KP852868531, T1j, T1i); T1k = FNMS(KP852868531, T1j, T1i); T1o = FMA(KP777861913, T14, TX); T1e = FNMS(KP777861913, T1d, T1c); T1n = FNMS(KP492403876, T1e, T1b); T1f = FMA(KP984807753, T1e, T1b); T1v = FMA(KP852868531, T1o, T1n); T1p = FNMS(KP852868531, T1o, T1n); } { E TN, T17, T18, T1g; TN = W[0]; T17 = TN * T16; T18 = W[1]; T1g = T18 * T16; cr[WS(rs, 1)] = FNMS(T18, T1f, T17); ci[WS(rs, 1)] = FMA(TN, T1f, T1g); } { E T1t, T1w, T1r, T1u; T1r = W[6]; T1t = T1r * T1s; T1w = T1r * T1v; T1u = W[7]; cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t); ci[WS(rs, 4)] = FMA(T1u, T1s, T1w); } { E T1l, T1q, T1h, T1m; T1h = W[12]; T1l = T1h * T1k; T1q = T1h * T1p; T1m = W[13]; cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l); ci[WS(rs, 7)] = FMA(T1m, T1k, T1q); } } { E T1W, T1N, T1V, T1G, T20, T1S; T1W = FMA(KP954188894, T1E, T1B); { E T1M, T1R, T1F, T1Q; T1M = FNMS(KP954188894, T1L, T1K); T1N = FMA(KP984807753, T1M, T1J); T1V = FNMS(KP492403876, T1M, T1J); T1R = FMA(KP954188894, T1L, T1K); T1F = FNMS(KP954188894, T1E, T1B); T1Q = FNMS(KP492403876, T1F, T1y); T1G = FMA(KP984807753, T1F, T1y); T20 = FMA(KP852868531, T1R, T1Q); T1S = FNMS(KP852868531, T1R, T1Q); } { E T1H, T1O, T1x, T1I; T1x = W[2]; T1H = T1x * T1G; T1O = T1x * T1N; T1I = W[3]; cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H); ci[WS(rs, 2)] = FMA(T1I, T1G, T1O); } { E T23, T22, T24, T1Z, T21; T23 = FNMS(KP852868531, T1W, T1V); T22 = W[15]; T24 = T22 * T20; T1Z = W[14]; T21 = T1Z * T20; cr[WS(rs, 8)] = FNMS(T22, T23, T21); ci[WS(rs, 8)] = FMA(T1Z, T23, T24); } { E T1X, T1U, T1Y, T1P, T1T; T1X = FMA(KP852868531, T1W, T1V); T1U = W[9]; T1Y = T1U * T1S; T1P = W[8]; T1T = T1P * T1S; cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T); ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 9}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {24, 16, 72, 0} }; void X(codelet_hb_9) (planner *p) { X(khc2hc_register) (p, hb_9, &desc); } #else /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */ /* * This function contains 96 FP additions, 72 FP multiplications, * (or, 60 additions, 36 multiplications, 36 fused multiply/add), * 53 stack variables, 8 constants, and 36 memory accesses */ #include "rdft/scalar/hb.h" static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP173648177, +0.173648177666930348851716626769314796000375677); DK(KP342020143, +0.342020143325668733044099614682259580763083368); DK(KP939692620, +0.939692620785908384054109277324731469936208134); DK(KP642787609, +0.642787609686539326322643409907263432907559884); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u; E T1A, T1r, T1z, T10, T18; { E T1, Th, T4, T14, Tk, TL, TK, T15; T1 = cr[0]; Th = ci[WS(rs, 8)]; { E T2, T3, Ti, Tj; T2 = cr[WS(rs, 3)]; T3 = ci[WS(rs, 2)]; T4 = T2 + T3; T14 = KP866025403 * (T2 - T3); Ti = ci[WS(rs, 5)]; Tj = cr[WS(rs, 6)]; Tk = Ti - Tj; TL = KP866025403 * (Ti + Tj); } T5 = T1 + T4; Tl = Th + Tk; TK = FNMS(KP500000000, T4, T1); TM = TK - TL; T1o = TK + TL; T15 = FNMS(KP500000000, Tk, Th); T16 = T14 + T15; T1y = T15 - T14; } { E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV; E TY; { E T7, T8, Tn, To; T6 = cr[WS(rs, 1)]; T7 = cr[WS(rs, 4)]; T8 = ci[WS(rs, 1)]; T9 = T7 + T8; TN = FNMS(KP500000000, T9, T6); TQ = KP866025403 * (T7 - T8); Tm = ci[WS(rs, 7)]; Tn = ci[WS(rs, 4)]; To = cr[WS(rs, 7)]; Tp = Tn - To; TO = KP866025403 * (Tn + To); TR = FNMS(KP500000000, Tp, Tm); } { E Tc, Td, Ts, Tt; Tb = cr[WS(rs, 2)]; Tc = ci[WS(rs, 3)]; Td = ci[0]; Te = Tc + Td; TU = FNMS(KP500000000, Te, Tb); TX = KP866025403 * (Tc - Td); Tr = ci[WS(rs, 6)]; Ts = cr[WS(rs, 5)]; Tt = cr[WS(rs, 8)]; Tu = Ts + Tt; TV = KP866025403 * (Ts - Tt); TY = FMA(KP500000000, Tu, Tr); } { E TP, TS, T1s, T1t; Ta = T6 + T9; Tf = Tb + Te; Tg = Ta + Tf; Tq = Tm + Tp; Tv = Tr - Tu; Tw = Tq + Tv; TP = TN - TO; TS = TQ + TR; TT = FNMS(KP642787609, TS, KP766044443 * TP); T17 = FMA(KP766044443, TS, KP642787609 * TP); T1s = TU - TV; T1t = TY - TX; T1u = FMA(KP939692620, T1s, KP342020143 * T1t); T1A = FNMS(KP939692620, T1t, KP342020143 * T1s); { E T1p, T1q, TW, TZ; T1p = TN + TO; T1q = TR - TQ; T1r = FNMS(KP984807753, T1q, KP173648177 * T1p); T1z = FMA(KP173648177, T1q, KP984807753 * T1p); TW = TU + TV; TZ = TX + TY; T10 = FNMS(KP984807753, TZ, KP173648177 * TW); T18 = FMA(KP984807753, TW, KP173648177 * TZ); } } } cr[0] = T5 + Tg; ci[0] = Tl + Tw; { E TA, TG, TE, TI; { E Ty, Tz, TC, TD; Ty = FNMS(KP500000000, Tg, T5); Tz = KP866025403 * (Tv - Tq); TA = Ty - Tz; TG = Ty + Tz; TC = FNMS(KP500000000, Tw, Tl); TD = KP866025403 * (Ta - Tf); TE = TC - TD; TI = TD + TC; } { E Tx, TB, TF, TH; Tx = W[10]; TB = W[11]; cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA); ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA); TF = W[4]; TH = W[5]; cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG); ci[WS(rs, 3)] = FMA(TF, TI, TH * TG); } } { E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13; T1d = KP866025403 * (T18 - T17); T1h = KP866025403 * (TT - T10); T11 = TT + T10; T12 = TM + T11; T1c = FNMS(KP500000000, T11, TM); T19 = T17 + T18; T1a = T16 + T19; T1g = FNMS(KP500000000, T19, T16); TJ = W[0]; T13 = W[1]; cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12); ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a); { E T1k, T1m, T1j, T1l; T1k = T1c + T1d; T1m = T1h + T1g; T1j = W[6]; T1l = W[7]; cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k); ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k); } { E T1e, T1i, T1b, T1f; T1e = T1c - T1d; T1i = T1g - T1h; T1b = W[12]; T1f = W[13]; cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e); ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e); } } { E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x; T1F = KP866025403 * (T1A - T1z); T1J = KP866025403 * (T1r + T1u); T1v = T1r - T1u; T1w = T1o + T1v; T1E = FNMS(KP500000000, T1v, T1o); T1B = T1z + T1A; T1C = T1y + T1B; T1I = FNMS(KP500000000, T1B, T1y); T1n = W[2]; T1x = W[3]; cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w); ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w); { E T1M, T1O, T1L, T1N; T1M = T1F + T1E; T1O = T1I + T1J; T1L = W[8]; T1N = W[9]; cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M); ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O); } { E T1G, T1K, T1D, T1H; T1G = T1E - T1F; T1K = T1I - T1J; T1D = W[14]; T1H = W[15]; cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G); ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 9}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {60, 36, 36, 0} }; void X(codelet_hb_9) (planner *p) { X(khc2hc_register) (p, hb_9, &desc); } #endif