/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:55 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hc2cb2_16 -include rdft/scalar/hc2cb.h */ /* * This function contains 196 FP additions, 134 FP multiplications, * (or, 104 additions, 42 multiplications, 92 fused multiply/add), * 93 stack variables, 3 constants, and 64 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP414213562, +0.414213562373095048801688724209698078569671875); { INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { E Tv, Tw, T2z, T2C, TB, TF, Ty, Tz, T1V, TA, T2G, T3Q, T3C, T3g, T3L; E T30, T3m, T3z, T3w, T3s, T1X, T1Y, T2u, T2c, T2p, TE, TG, T1G, T1o, T1D; { E T3f, T3l, T2F, T3r, T2Z, T3v, TD, Tx; Tv = W[0]; Tw = W[2]; Tx = Tv * Tw; T2z = W[6]; T3f = Tv * T2z; T2C = W[7]; T3l = Tv * T2C; TB = W[4]; T2F = Tv * TB; T3r = Tw * TB; TF = W[5]; T2Z = Tv * TF; T3v = Tw * TF; Ty = W[1]; Tz = W[3]; TD = Tv * Tz; T1V = FMA(Ty, Tz, Tx); TA = FNMS(Ty, Tz, Tx); T2G = FNMS(Ty, TF, T2F); T3Q = FMA(Tz, TB, T3v); T3C = FNMS(Ty, TB, T2Z); T3g = FMA(Ty, T2C, T3f); T3L = FNMS(Tz, TF, T3r); T30 = FMA(Ty, TB, T2Z); T3m = FNMS(Ty, T2z, T3l); T3z = FMA(Ty, TF, T2F); T3w = FNMS(Tz, TB, T3v); T3s = FMA(Tz, TF, T3r); { E T1W, T2b, TC, T1n; T1W = T1V * TB; T2b = T1V * TF; T1X = FNMS(Ty, Tw, TD); T1Y = FNMS(T1X, TF, T1W); T2u = FNMS(T1X, TB, T2b); T2c = FMA(T1X, TB, T2b); T2p = FMA(T1X, TF, T1W); TC = TA * TB; T1n = TA * TF; TE = FMA(Ty, Tw, TD); TG = FNMS(TE, TF, TC); T1G = FNMS(TE, TB, T1n); T1o = FMA(TE, TB, T1n); T1D = FMA(TE, TF, TC); } } { E TL, T1Z, T2d, T1t, T31, T34, T3n, T3D, T3E, T3R, T1w, T20, Tf, T3M, T2L; E T3h, TW, T2e, T3G, T3H, T3N, T2Q, T36, T2V, T37, Tu, T3S, T18, T1z, T24; E T2g, T27, T2h, T1j, T1y; { E T3, TH, T1s, T32, T6, T1p, TK, T33, Ta, TM, TP, T2J, Td, TR, TU; E T2I; { E T1, T2, T1q, T1r; T1 = Rp[0]; T2 = Rm[WS(rs, 7)]; T3 = T1 + T2; TH = T1 - T2; T1q = Ip[0]; T1r = Im[WS(rs, 7)]; T1s = T1q + T1r; T32 = T1q - T1r; } { E T4, T5, TI, TJ; T4 = Rp[WS(rs, 4)]; T5 = Rm[WS(rs, 3)]; T6 = T4 + T5; T1p = T4 - T5; TI = Ip[WS(rs, 4)]; TJ = Im[WS(rs, 3)]; TK = TI + TJ; T33 = TI - TJ; } { E T8, T9, TN, TO; T8 = Rp[WS(rs, 2)]; T9 = Rm[WS(rs, 5)]; Ta = T8 + T9; TM = T8 - T9; TN = Ip[WS(rs, 2)]; TO = Im[WS(rs, 5)]; TP = TN + TO; T2J = TN - TO; } { E Tb, Tc, TS, TT; Tb = Rm[WS(rs, 1)]; Tc = Rp[WS(rs, 6)]; Td = Tb + Tc; TR = Tb - Tc; TS = Ip[WS(rs, 6)]; TT = Im[WS(rs, 1)]; TU = TS + TT; T2I = TS - TT; } TL = TH - TK; T1Z = TH + TK; T2d = T1s - T1p; T1t = T1p + T1s; T31 = Ta - Td; T34 = T32 - T33; T3n = T34 - T31; { E T1u, T1v, T7, Te; T3D = T32 + T33; T3E = T2J + T2I; T3R = T3D - T3E; T1u = TM + TP; T1v = TR + TU; T1w = T1u - T1v; T20 = T1u + T1v; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; T3M = T7 - Te; { E T2H, T2K, TQ, TV; T2H = T3 - T6; T2K = T2I - T2J; T2L = T2H + T2K; T3h = T2H - T2K; TQ = TM - TP; TV = TR - TU; TW = TQ + TV; T2e = TQ - TV; } } } { E Ti, T1e, T1c, T2N, Tl, T19, T1h, T2O, Tp, T13, T11, T2S, Ts, TY, T16; E T2T, T2M, T2P; { E Tg, Th, T1a, T1b; Tg = Rp[WS(rs, 1)]; Th = Rm[WS(rs, 6)]; Ti = Tg + Th; T1e = Tg - Th; T1a = Ip[WS(rs, 1)]; T1b = Im[WS(rs, 6)]; T1c = T1a + T1b; T2N = T1a - T1b; } { E Tj, Tk, T1f, T1g; Tj = Rp[WS(rs, 5)]; Tk = Rm[WS(rs, 2)]; Tl = Tj + Tk; T19 = Tj - Tk; T1f = Ip[WS(rs, 5)]; T1g = Im[WS(rs, 2)]; T1h = T1f + T1g; T2O = T1f - T1g; } { E Tn, To, TZ, T10; Tn = Rm[0]; To = Rp[WS(rs, 7)]; Tp = Tn + To; T13 = Tn - To; TZ = Ip[WS(rs, 7)]; T10 = Im[0]; T11 = TZ + T10; T2S = TZ - T10; } { E Tq, Tr, T14, T15; Tq = Rp[WS(rs, 3)]; Tr = Rm[WS(rs, 4)]; Ts = Tq + Tr; TY = Tq - Tr; T14 = Ip[WS(rs, 3)]; T15 = Im[WS(rs, 4)]; T16 = T14 + T15; T2T = T14 - T15; } T3G = T2N + T2O; T3H = T2S + T2T; T3N = T3H - T3G; T2M = Ti - Tl; T2P = T2N - T2O; T2Q = T2M - T2P; T36 = T2M + T2P; { E T2R, T2U, Tm, Tt; T2R = Tp - Ts; T2U = T2S - T2T; T2V = T2R + T2U; T37 = T2U - T2R; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; T3S = Tm - Tt; } { E T12, T17, T22, T23; T12 = TY - T11; T17 = T13 - T16; T18 = FNMS(KP414213562, T17, T12); T1z = FMA(KP414213562, T12, T17); T22 = T1c - T19; T23 = T1e + T1h; T24 = FNMS(KP414213562, T23, T22); T2g = FMA(KP414213562, T22, T23); } { E T25, T26, T1d, T1i; T25 = TY + T11; T26 = T13 + T16; T27 = FNMS(KP414213562, T26, T25); T2h = FMA(KP414213562, T25, T26); T1d = T19 + T1c; T1i = T1e - T1h; T1j = FMA(KP414213562, T1i, T1d); T1y = FNMS(KP414213562, T1d, T1i); } } Rp[0] = Tf + Tu; { E T3B, T3K, T3F, T3I, T3J, T3A; T3A = Tf - Tu; T3B = T3z * T3A; T3K = T3C * T3A; T3F = T3D + T3E; T3I = T3G + T3H; T3J = T3F - T3I; Rm[0] = T3F + T3I; Rm[WS(rs, 4)] = FMA(T3z, T3J, T3K); Rp[WS(rs, 4)] = FNMS(T3C, T3J, T3B); } { E T3O, T3P, T3T, T3U; T3O = T3M - T3N; T3P = T3L * T3O; T3T = T3R - T3S; T3U = T3L * T3T; Rp[WS(rs, 6)] = FNMS(T3Q, T3T, T3P); Rm[WS(rs, 6)] = FMA(T3Q, T3O, T3U); } { E T3V, T3W, T3X, T3Y; T3V = T3M + T3N; T3W = TA * T3V; T3X = T3S + T3R; T3Y = TA * T3X; Rp[WS(rs, 2)] = FNMS(TE, T3X, T3W); Rm[WS(rs, 2)] = FMA(TE, T3V, T3Y); } { E T3j, T3t, T3p, T3x, T3i, T3o; T3i = T37 - T36; T3j = FNMS(KP707106781, T3i, T3h); T3t = FMA(KP707106781, T3i, T3h); T3o = T2Q - T2V; T3p = FNMS(KP707106781, T3o, T3n); T3x = FMA(KP707106781, T3o, T3n); { E T3k, T3q, T3u, T3y; T3k = T3g * T3j; Rp[WS(rs, 7)] = FNMS(T3m, T3p, T3k); T3q = T3g * T3p; Rm[WS(rs, 7)] = FMA(T3m, T3j, T3q); T3u = T3s * T3t; Rp[WS(rs, 3)] = FNMS(T3w, T3x, T3u); T3y = T3s * T3x; Rm[WS(rs, 3)] = FMA(T3w, T3t, T3y); } } { E T2X, T3b, T39, T3d, T2W, T35, T38; T2W = T2Q + T2V; T2X = FNMS(KP707106781, T2W, T2L); T3b = FMA(KP707106781, T2W, T2L); T35 = T31 + T34; T38 = T36 + T37; T39 = FNMS(KP707106781, T38, T35); T3d = FMA(KP707106781, T38, T35); { E T2Y, T3a, T3c, T3e; T2Y = T2G * T2X; Rp[WS(rs, 5)] = FNMS(T30, T39, T2Y); T3a = T30 * T2X; Rm[WS(rs, 5)] = FMA(T2G, T39, T3a); T3c = T1V * T3b; Rp[WS(rs, 1)] = FNMS(T1X, T3d, T3c); T3e = T1X * T3b; Rm[WS(rs, 1)] = FMA(T1V, T3d, T3e); } } { E T29, T2l, T2j, T2n; { E T21, T28, T2f, T2i; T21 = FNMS(KP707106781, T20, T1Z); T28 = T24 + T27; T29 = FMA(KP923879532, T28, T21); T2l = FNMS(KP923879532, T28, T21); T2f = FMA(KP707106781, T2e, T2d); T2i = T2g - T2h; T2j = FNMS(KP923879532, T2i, T2f); T2n = FMA(KP923879532, T2i, T2f); } { E T2a, T2k, T2m, T2o; T2a = T1Y * T29; Ip[WS(rs, 5)] = FNMS(T2c, T2j, T2a); T2k = T2c * T29; Im[WS(rs, 5)] = FMA(T1Y, T2j, T2k); T2m = Tw * T2l; Ip[WS(rs, 1)] = FNMS(Tz, T2n, T2m); T2o = Tz * T2l; Im[WS(rs, 1)] = FMA(Tw, T2n, T2o); } } { E T1l, T1E, T1B, T1H; { E TX, T1k, T1x, T1A; TX = FNMS(KP707106781, TW, TL); T1k = T18 - T1j; T1l = FNMS(KP923879532, T1k, TX); T1E = FMA(KP923879532, T1k, TX); T1x = FNMS(KP707106781, T1w, T1t); T1A = T1y - T1z; T1B = FNMS(KP923879532, T1A, T1x); T1H = FMA(KP923879532, T1A, T1x); } { E T1m, T1C, T1F, T1I; T1m = TG * T1l; Ip[WS(rs, 6)] = FNMS(T1o, T1B, T1m); T1C = T1o * T1l; Im[WS(rs, 6)] = FMA(TG, T1B, T1C); T1F = T1D * T1E; Ip[WS(rs, 2)] = FNMS(T1G, T1H, T1F); T1I = T1G * T1E; Im[WS(rs, 2)] = FMA(T1D, T1H, T1I); } } { E T2s, T2A, T2x, T2D; { E T2q, T2r, T2v, T2w; T2q = FMA(KP707106781, T20, T1Z); T2r = T2g + T2h; T2s = FNMS(KP923879532, T2r, T2q); T2A = FMA(KP923879532, T2r, T2q); T2v = FNMS(KP707106781, T2e, T2d); T2w = T27 - T24; T2x = FMA(KP923879532, T2w, T2v); T2D = FNMS(KP923879532, T2w, T2v); } { E T2t, T2y, T2B, T2E; T2t = T2p * T2s; Ip[WS(rs, 3)] = FNMS(T2u, T2x, T2t); T2y = T2p * T2x; Im[WS(rs, 3)] = FMA(T2u, T2s, T2y); T2B = T2z * T2A; Ip[WS(rs, 7)] = FNMS(T2C, T2D, T2B); T2E = T2z * T2D; Im[WS(rs, 7)] = FMA(T2C, T2A, T2E); } } { E T1L, T1R, T1P, T1T; { E T1J, T1K, T1N, T1O; T1J = FMA(KP707106781, TW, TL); T1K = T1y + T1z; T1L = FNMS(KP923879532, T1K, T1J); T1R = FMA(KP923879532, T1K, T1J); T1N = FMA(KP707106781, T1w, T1t); T1O = T1j + T18; T1P = FNMS(KP923879532, T1O, T1N); T1T = FMA(KP923879532, T1O, T1N); } { E T1M, T1Q, T1S, T1U; T1M = TB * T1L; Ip[WS(rs, 4)] = FNMS(TF, T1P, T1M); T1Q = TB * T1P; Im[WS(rs, 4)] = FMA(TF, T1L, T1Q); T1S = Tv * T1R; Ip[0] = FNMS(Ty, T1T, T1S); T1U = Tv * T1T; Im[0] = FMA(Ty, T1R, T1U); } } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 15}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 16, "hc2cb2_16", twinstr, &GENUS, {104, 42, 92, 0} }; void X(codelet_hc2cb2_16) (planner *p) { X(khc2c_register) (p, hc2cb2_16, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hc2cb2_16 -include rdft/scalar/hc2cb.h */ /* * This function contains 196 FP additions, 108 FP multiplications, * (or, 156 additions, 68 multiplications, 40 fused multiply/add), * 80 stack variables, 3 constants, and 64 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { E Tv, Ty, T1l, T1n, T1p, T1t, T27, T25, Tz, Tw, TB, T21, T1P, T1H, T1X; E T17, T1L, T1N, T1v, T1w, T1x, T1B, T2F, T2T, T2b, T2R, T3j, T3x, T35, T3t; { E TA, T1J, T15, T1G, Tx, T1K, T16, T1F; { E T1m, T1s, T1o, T1r; Tv = W[0]; Ty = W[1]; T1l = W[2]; T1n = W[3]; T1m = Tv * T1l; T1s = Ty * T1l; T1o = Ty * T1n; T1r = Tv * T1n; T1p = T1m + T1o; T1t = T1r - T1s; T27 = T1r + T1s; T25 = T1m - T1o; Tz = W[5]; TA = Ty * Tz; T1J = T1l * Tz; T15 = Tv * Tz; T1G = T1n * Tz; Tw = W[4]; Tx = Tv * Tw; T1K = T1n * Tw; T16 = Ty * Tw; T1F = T1l * Tw; } TB = Tx - TA; T21 = T1J + T1K; T1P = T15 - T16; T1H = T1F + T1G; T1X = T1F - T1G; T17 = T15 + T16; T1L = T1J - T1K; T1N = Tx + TA; T1v = W[6]; T1w = W[7]; T1x = FMA(Tv, T1v, Ty * T1w); T1B = FNMS(Ty, T1v, Tv * T1w); { E T2D, T2E, T29, T2a; T2D = T25 * Tz; T2E = T27 * Tw; T2F = T2D + T2E; T2T = T2D - T2E; T29 = T25 * Tw; T2a = T27 * Tz; T2b = T29 - T2a; T2R = T29 + T2a; } { E T3h, T3i, T33, T34; T3h = T1p * Tz; T3i = T1t * Tw; T3j = T3h + T3i; T3x = T3h - T3i; T33 = T1p * Tw; T34 = T1t * Tz; T35 = T33 - T34; T3t = T33 + T34; } } { E T7, T36, T3k, TC, T1f, T2e, T2I, T1Q, Te, TJ, T1R, T18, T2L, T37, T2l; E T3l, Tm, T1T, TT, T1h, T2A, T2N, T3b, T3n, Tt, T1U, T12, T1i, T2t, T2O; E T3e, T3o; { E T3, T2c, T1b, T2H, T6, T2G, T1e, T2d; { E T1, T2, T19, T1a; T1 = Rp[0]; T2 = Rm[WS(rs, 7)]; T3 = T1 + T2; T2c = T1 - T2; T19 = Ip[0]; T1a = Im[WS(rs, 7)]; T1b = T19 - T1a; T2H = T19 + T1a; } { E T4, T5, T1c, T1d; T4 = Rp[WS(rs, 4)]; T5 = Rm[WS(rs, 3)]; T6 = T4 + T5; T2G = T4 - T5; T1c = Ip[WS(rs, 4)]; T1d = Im[WS(rs, 3)]; T1e = T1c - T1d; T2d = T1c + T1d; } T7 = T3 + T6; T36 = T2c + T2d; T3k = T2H - T2G; TC = T3 - T6; T1f = T1b - T1e; T2e = T2c - T2d; T2I = T2G + T2H; T1Q = T1b + T1e; } { E Ta, T2f, TI, T2g, Td, T2i, TF, T2j; { E T8, T9, TG, TH; T8 = Rp[WS(rs, 2)]; T9 = Rm[WS(rs, 5)]; Ta = T8 + T9; T2f = T8 - T9; TG = Ip[WS(rs, 2)]; TH = Im[WS(rs, 5)]; TI = TG - TH; T2g = TG + TH; } { E Tb, Tc, TD, TE; Tb = Rm[WS(rs, 1)]; Tc = Rp[WS(rs, 6)]; Td = Tb + Tc; T2i = Tb - Tc; TD = Ip[WS(rs, 6)]; TE = Im[WS(rs, 1)]; TF = TD - TE; T2j = TD + TE; } Te = Ta + Td; TJ = TF - TI; T1R = TI + TF; T18 = Ta - Td; { E T2J, T2K, T2h, T2k; T2J = T2f + T2g; T2K = T2i + T2j; T2L = KP707106781 * (T2J - T2K); T37 = KP707106781 * (T2J + T2K); T2h = T2f - T2g; T2k = T2i - T2j; T2l = KP707106781 * (T2h + T2k); T3l = KP707106781 * (T2h - T2k); } } { E Ti, T2x, TO, T2v, Tl, T2u, TR, T2y, TL, TS; { E Tg, Th, TM, TN; Tg = Rp[WS(rs, 1)]; Th = Rm[WS(rs, 6)]; Ti = Tg + Th; T2x = Tg - Th; TM = Ip[WS(rs, 1)]; TN = Im[WS(rs, 6)]; TO = TM - TN; T2v = TM + TN; } { E Tj, Tk, TP, TQ; Tj = Rp[WS(rs, 5)]; Tk = Rm[WS(rs, 2)]; Tl = Tj + Tk; T2u = Tj - Tk; TP = Ip[WS(rs, 5)]; TQ = Im[WS(rs, 2)]; TR = TP - TQ; T2y = TP + TQ; } Tm = Ti + Tl; T1T = TO + TR; TL = Ti - Tl; TS = TO - TR; TT = TL - TS; T1h = TL + TS; { E T2w, T2z, T39, T3a; T2w = T2u + T2v; T2z = T2x - T2y; T2A = FMA(KP923879532, T2w, KP382683432 * T2z); T2N = FNMS(KP382683432, T2w, KP923879532 * T2z); T39 = T2x + T2y; T3a = T2v - T2u; T3b = FNMS(KP923879532, T3a, KP382683432 * T39); T3n = FMA(KP382683432, T3a, KP923879532 * T39); } } { E Tp, T2q, TX, T2o, Ts, T2n, T10, T2r, TU, T11; { E Tn, To, TV, TW; Tn = Rm[0]; To = Rp[WS(rs, 7)]; Tp = Tn + To; T2q = Tn - To; TV = Ip[WS(rs, 7)]; TW = Im[0]; TX = TV - TW; T2o = TV + TW; } { E Tq, Tr, TY, TZ; Tq = Rp[WS(rs, 3)]; Tr = Rm[WS(rs, 4)]; Ts = Tq + Tr; T2n = Tq - Tr; TY = Ip[WS(rs, 3)]; TZ = Im[WS(rs, 4)]; T10 = TY - TZ; T2r = TY + TZ; } Tt = Tp + Ts; T1U = TX + T10; TU = Tp - Ts; T11 = TX - T10; T12 = TU + T11; T1i = T11 - TU; { E T2p, T2s, T3c, T3d; T2p = T2n - T2o; T2s = T2q - T2r; T2t = FNMS(KP382683432, T2s, KP923879532 * T2p); T2O = FMA(KP382683432, T2p, KP923879532 * T2s); T3c = T2q + T2r; T3d = T2n + T2o; T3e = FNMS(KP923879532, T3d, KP382683432 * T3c); T3o = FMA(KP382683432, T3d, KP923879532 * T3c); } } { E Tf, Tu, T1O, T1S, T1V, T1W; Tf = T7 + Te; Tu = Tm + Tt; T1O = Tf - Tu; T1S = T1Q + T1R; T1V = T1T + T1U; T1W = T1S - T1V; Rp[0] = Tf + Tu; Rm[0] = T1S + T1V; Rp[WS(rs, 4)] = FNMS(T1P, T1W, T1N * T1O); Rm[WS(rs, 4)] = FMA(T1P, T1O, T1N * T1W); } { E T3g, T3r, T3q, T3s; { E T38, T3f, T3m, T3p; T38 = T36 - T37; T3f = T3b + T3e; T3g = T38 - T3f; T3r = T38 + T3f; T3m = T3k + T3l; T3p = T3n - T3o; T3q = T3m - T3p; T3s = T3m + T3p; } Ip[WS(rs, 5)] = FNMS(T3j, T3q, T35 * T3g); Im[WS(rs, 5)] = FMA(T3j, T3g, T35 * T3q); Ip[WS(rs, 1)] = FNMS(T1n, T3s, T1l * T3r); Im[WS(rs, 1)] = FMA(T1n, T3r, T1l * T3s); } { E T3w, T3B, T3A, T3C; { E T3u, T3v, T3y, T3z; T3u = T36 + T37; T3v = T3n + T3o; T3w = T3u - T3v; T3B = T3u + T3v; T3y = T3k - T3l; T3z = T3b - T3e; T3A = T3y + T3z; T3C = T3y - T3z; } Ip[WS(rs, 3)] = FNMS(T3x, T3A, T3t * T3w); Im[WS(rs, 3)] = FMA(T3t, T3A, T3x * T3w); Ip[WS(rs, 7)] = FNMS(T1w, T3C, T1v * T3B); Im[WS(rs, 7)] = FMA(T1v, T3C, T1w * T3B); } { E T14, T1q, T1k, T1u; { E TK, T13, T1g, T1j; TK = TC + TJ; T13 = KP707106781 * (TT + T12); T14 = TK - T13; T1q = TK + T13; T1g = T18 + T1f; T1j = KP707106781 * (T1h + T1i); T1k = T1g - T1j; T1u = T1g + T1j; } Rp[WS(rs, 5)] = FNMS(T17, T1k, TB * T14); Rm[WS(rs, 5)] = FMA(T17, T14, TB * T1k); Rp[WS(rs, 1)] = FNMS(T1t, T1u, T1p * T1q); Rm[WS(rs, 1)] = FMA(T1t, T1q, T1p * T1u); } { E T1A, T1I, T1E, T1M; { E T1y, T1z, T1C, T1D; T1y = TC - TJ; T1z = KP707106781 * (T1i - T1h); T1A = T1y - T1z; T1I = T1y + T1z; T1C = T1f - T18; T1D = KP707106781 * (TT - T12); T1E = T1C - T1D; T1M = T1C + T1D; } Rp[WS(rs, 7)] = FNMS(T1B, T1E, T1x * T1A); Rm[WS(rs, 7)] = FMA(T1x, T1E, T1B * T1A); Rp[WS(rs, 3)] = FNMS(T1L, T1M, T1H * T1I); Rm[WS(rs, 3)] = FMA(T1H, T1M, T1L * T1I); } { E T2C, T2S, T2Q, T2U; { E T2m, T2B, T2M, T2P; T2m = T2e - T2l; T2B = T2t - T2A; T2C = T2m - T2B; T2S = T2m + T2B; T2M = T2I - T2L; T2P = T2N - T2O; T2Q = T2M - T2P; T2U = T2M + T2P; } Ip[WS(rs, 6)] = FNMS(T2F, T2Q, T2b * T2C); Im[WS(rs, 6)] = FMA(T2F, T2C, T2b * T2Q); Ip[WS(rs, 2)] = FNMS(T2T, T2U, T2R * T2S); Im[WS(rs, 2)] = FMA(T2T, T2S, T2R * T2U); } { E T2X, T31, T30, T32; { E T2V, T2W, T2Y, T2Z; T2V = T2e + T2l; T2W = T2N + T2O; T2X = T2V - T2W; T31 = T2V + T2W; T2Y = T2I + T2L; T2Z = T2A + T2t; T30 = T2Y - T2Z; T32 = T2Y + T2Z; } Ip[WS(rs, 4)] = FNMS(Tz, T30, Tw * T2X); Im[WS(rs, 4)] = FMA(Tw, T30, Tz * T2X); Ip[0] = FNMS(Ty, T32, Tv * T31); Im[0] = FMA(Tv, T32, Ty * T31); } { E T20, T26, T24, T28; { E T1Y, T1Z, T22, T23; T1Y = T7 - Te; T1Z = T1U - T1T; T20 = T1Y - T1Z; T26 = T1Y + T1Z; T22 = T1Q - T1R; T23 = Tm - Tt; T24 = T22 - T23; T28 = T23 + T22; } Rp[WS(rs, 6)] = FNMS(T21, T24, T1X * T20); Rm[WS(rs, 6)] = FMA(T1X, T24, T21 * T20); Rp[WS(rs, 2)] = FNMS(T27, T28, T25 * T26); Rm[WS(rs, 2)] = FMA(T25, T28, T27 * T26); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 15}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 16, "hc2cb2_16", twinstr, &GENUS, {156, 68, 40, 0} }; void X(codelet_hc2cb2_16) (planner *p) { X(khc2c_register) (p, hc2cb2_16, &desc, HC2C_VIA_RDFT); } #endif