/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:54 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 4 -dif -name hc2cb2_4 -include rdft/scalar/hc2cb.h */ /* * This function contains 24 FP additions, 16 FP multiplications, * (or, 16 additions, 8 multiplications, 8 fused multiply/add), * 33 stack variables, 0 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) { E T7, Tb, T8, Ta, Tc, Tg, T9, Tf; T7 = W[0]; Tb = W[3]; T8 = W[2]; T9 = T7 * T8; Tf = T7 * Tb; Ta = W[1]; Tc = FMA(Ta, Tb, T9); Tg = FNMS(Ta, T8, Tf); { E T3, T6, Td, Tj, Tz, Tx, Tr, Tm, Tv, Ts, Tw, TA; { E Th, Ti, Tu, Tp, Tk, Tl, Tq, Tt; { E T1, T2, T4, T5; Th = Ip[0]; Ti = Im[WS(rs, 1)]; Tu = Th + Ti; T1 = Rp[0]; T2 = Rm[WS(rs, 1)]; T3 = T1 + T2; Tp = T1 - T2; Tk = Ip[WS(rs, 1)]; Tl = Im[0]; Tq = Tk + Tl; T4 = Rp[WS(rs, 1)]; T5 = Rm[0]; T6 = T4 + T5; Tt = T4 - T5; } Td = T3 - T6; Tj = Th - Ti; Tz = Tu - Tt; Tx = Tp + Tq; Tr = Tp - Tq; Tm = Tk - Tl; Tv = Tt + Tu; } Rp[0] = T3 + T6; Rm[0] = Tj + Tm; Ts = T7 * Tr; Ip[0] = FNMS(Ta, Tv, Ts); Tw = T7 * Tv; Im[0] = FMA(Ta, Tr, Tw); TA = T8 * Tz; Im[WS(rs, 1)] = FMA(Tb, Tx, TA); { E Ty, Te, To, Tn; Ty = T8 * Tx; Ip[WS(rs, 1)] = FNMS(Tb, Tz, Ty); Te = Tc * Td; To = Tg * Td; Tn = Tj - Tm; Rp[WS(rs, 1)] = FNMS(Tg, Tn, Te); Rm[WS(rs, 1)] = FMA(Tc, Tn, To); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 4, "hc2cb2_4", twinstr, &GENUS, {16, 8, 8, 0} }; void X(codelet_hc2cb2_4) (planner *p) { X(khc2c_register) (p, hc2cb2_4, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 4 -dif -name hc2cb2_4 -include rdft/scalar/hc2cb.h */ /* * This function contains 24 FP additions, 16 FP multiplications, * (or, 16 additions, 8 multiplications, 8 fused multiply/add), * 21 stack variables, 0 constants, and 16 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { { INT m; for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) { E T7, T9, T8, Ta, Tb, Td; T7 = W[0]; T9 = W[1]; T8 = W[2]; Ta = W[3]; Tb = FMA(T7, T8, T9 * Ta); Td = FNMS(T9, T8, T7 * Ta); { E T3, Tl, Tg, Tp, T6, To, Tj, Tm, Tc, Tk; { E T1, T2, Te, Tf; T1 = Rp[0]; T2 = Rm[WS(rs, 1)]; T3 = T1 + T2; Tl = T1 - T2; Te = Ip[0]; Tf = Im[WS(rs, 1)]; Tg = Te - Tf; Tp = Te + Tf; } { E T4, T5, Th, Ti; T4 = Rp[WS(rs, 1)]; T5 = Rm[0]; T6 = T4 + T5; To = T4 - T5; Th = Ip[WS(rs, 1)]; Ti = Im[0]; Tj = Th - Ti; Tm = Th + Ti; } Rp[0] = T3 + T6; Rm[0] = Tg + Tj; Tc = T3 - T6; Tk = Tg - Tj; Rp[WS(rs, 1)] = FNMS(Td, Tk, Tb * Tc); Rm[WS(rs, 1)] = FMA(Td, Tc, Tb * Tk); { E Tn, Tq, Tr, Ts; Tn = Tl - Tm; Tq = To + Tp; Ip[0] = FNMS(T9, Tq, T7 * Tn); Im[0] = FMA(T7, Tq, T9 * Tn); Tr = Tl + Tm; Ts = Tp - To; Ip[WS(rs, 1)] = FNMS(Ta, Ts, T8 * Tr); Im[WS(rs, 1)] = FMA(T8, Ts, Ta * Tr); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 4, "hc2cb2_4", twinstr, &GENUS, {16, 8, 8, 0} }; void X(codelet_hc2cb2_4) (planner *p) { X(khc2c_register) (p, hc2cb2_4, &desc, HC2C_VIA_RDFT); } #endif