/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:52 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */ /* * This function contains 102 FP additions, 72 FP multiplications, * (or, 48 additions, 18 multiplications, 54 fused multiply/add), * 47 stack variables, 4 constants, and 40 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT m; for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { E TH, T1B, TB, T11, T1E, T1G, TK, TM, T1x, T1V, T3, T1g, Tl, T1I, T1J; E TO, TP, T1p, Ti, Tk, T1n, T1o, TF, TG; TF = Ip[0]; TG = Im[WS(rs, 4)]; TH = TF - TG; T1B = TF + TG; { E Tp, T1u, Tz, T1s, Ts, T1v, Tw, T1r; { E Tn, To, Tx, Ty; Tn = Ip[WS(rs, 4)]; To = Im[0]; Tp = Tn - To; T1u = Tn + To; Tx = Ip[WS(rs, 3)]; Ty = Im[WS(rs, 1)]; Tz = Tx - Ty; T1s = Tx + Ty; } { E Tq, Tr, Tu, Tv; Tq = Ip[WS(rs, 1)]; Tr = Im[WS(rs, 3)]; Ts = Tq - Tr; T1v = Tq + Tr; Tu = Ip[WS(rs, 2)]; Tv = Im[WS(rs, 2)]; Tw = Tu - Tv; T1r = Tu + Tv; } { E Tt, TA, T1C, T1D; Tt = Tp - Ts; TA = Tw - Tz; TB = FNMS(KP618033988, TA, Tt); T11 = FMA(KP618033988, Tt, TA); T1C = T1r - T1s; T1D = T1u - T1v; T1E = T1C + T1D; T1G = T1C - T1D; } { E TI, TJ, T1t, T1w; TI = Tw + Tz; TJ = Tp + Ts; TK = TI + TJ; TM = TI - TJ; T1t = T1r + T1s; T1w = T1u + T1v; T1x = FMA(KP618033988, T1w, T1t); T1V = FNMS(KP618033988, T1t, T1w); } } { E Td, T1k, Tg, T1l, Th, T1m, T6, T1h, T9, T1i, Ta, T1j, T1, T2; T1 = Rp[0]; T2 = Rm[WS(rs, 4)]; T3 = T1 + T2; T1g = T1 - T2; { E Tb, Tc, Te, Tf; Tb = Rp[WS(rs, 4)]; Tc = Rm[0]; Td = Tb + Tc; T1k = Tb - Tc; Te = Rm[WS(rs, 3)]; Tf = Rp[WS(rs, 1)]; Tg = Te + Tf; T1l = Te - Tf; } Th = Td + Tg; T1m = T1k + T1l; { E T4, T5, T7, T8; T4 = Rp[WS(rs, 2)]; T5 = Rm[WS(rs, 2)]; T6 = T4 + T5; T1h = T4 - T5; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 3)]; T9 = T7 + T8; T1i = T7 - T8; } Ta = T6 + T9; T1j = T1h + T1i; Tl = Ta - Th; T1I = T1h - T1i; T1J = T1k - T1l; TO = Td - Tg; TP = T6 - T9; T1p = T1j - T1m; Ti = Ta + Th; Tk = FNMS(KP250000000, Ti, T3); T1n = T1j + T1m; T1o = FNMS(KP250000000, T1n, T1g); } Rp[0] = T3 + Ti; Rm[0] = TH + TK; { E T2d, T29, T2b, T2c, T2e, T2a; T2d = T1B + T1E; T2a = T1g + T1n; T29 = W[8]; T2b = T29 * T2a; T2c = W[9]; T2e = T2c * T2a; Ip[WS(rs, 2)] = FNMS(T2c, T2d, T2b); Im[WS(rs, 2)] = FMA(T29, T2d, T2e); } { E TQ, T16, TC, TU, TN, T15, T12, T1a, Tm, TL, T10; TQ = FNMS(KP618033988, TP, TO); T16 = FMA(KP618033988, TO, TP); Tm = FNMS(KP559016994, Tl, Tk); TC = FMA(KP951056516, TB, Tm); TU = FNMS(KP951056516, TB, Tm); TL = FNMS(KP250000000, TK, TH); TN = FNMS(KP559016994, TM, TL); T15 = FMA(KP559016994, TM, TL); T10 = FMA(KP559016994, Tl, Tk); T12 = FMA(KP951056516, T11, T10); T1a = FNMS(KP951056516, T11, T10); { E TR, TE, TS, Tj, TD; TR = FNMS(KP951056516, TQ, TN); TE = W[3]; TS = TE * TC; Tj = W[2]; TD = Tj * TC; Rp[WS(rs, 1)] = FNMS(TE, TR, TD); Rm[WS(rs, 1)] = FMA(Tj, TR, TS); } { E T1d, T1c, T1e, T19, T1b; T1d = FMA(KP951056516, T16, T15); T1c = W[11]; T1e = T1c * T1a; T19 = W[10]; T1b = T19 * T1a; Rp[WS(rs, 3)] = FNMS(T1c, T1d, T1b); Rm[WS(rs, 3)] = FMA(T19, T1d, T1e); } { E TX, TW, TY, TT, TV; TX = FMA(KP951056516, TQ, TN); TW = W[15]; TY = TW * TU; TT = W[14]; TV = TT * TU; Rp[WS(rs, 4)] = FNMS(TW, TX, TV); Rm[WS(rs, 4)] = FMA(TT, TX, TY); } { E T17, T14, T18, TZ, T13; T17 = FNMS(KP951056516, T16, T15); T14 = W[7]; T18 = T14 * T12; TZ = W[6]; T13 = TZ * T12; Rp[WS(rs, 2)] = FNMS(T14, T17, T13); Rm[WS(rs, 2)] = FMA(TZ, T17, T18); } } { E T1K, T20, T1y, T1O, T1H, T1Z, T1W, T24, T1q, T1F, T1U; T1K = FMA(KP618033988, T1J, T1I); T20 = FNMS(KP618033988, T1I, T1J); T1q = FMA(KP559016994, T1p, T1o); T1y = FNMS(KP951056516, T1x, T1q); T1O = FMA(KP951056516, T1x, T1q); T1F = FNMS(KP250000000, T1E, T1B); T1H = FMA(KP559016994, T1G, T1F); T1Z = FNMS(KP559016994, T1G, T1F); T1U = FNMS(KP559016994, T1p, T1o); T1W = FNMS(KP951056516, T1V, T1U); T24 = FMA(KP951056516, T1V, T1U); { E T1L, T1A, T1M, T1f, T1z; T1L = FMA(KP951056516, T1K, T1H); T1A = W[1]; T1M = T1A * T1y; T1f = W[0]; T1z = T1f * T1y; Ip[0] = FNMS(T1A, T1L, T1z); Im[0] = FMA(T1f, T1L, T1M); } { E T27, T26, T28, T23, T25; T27 = FNMS(KP951056516, T20, T1Z); T26 = W[13]; T28 = T26 * T24; T23 = W[12]; T25 = T23 * T24; Ip[WS(rs, 3)] = FNMS(T26, T27, T25); Im[WS(rs, 3)] = FMA(T23, T27, T28); } { E T1R, T1Q, T1S, T1N, T1P; T1R = FNMS(KP951056516, T1K, T1H); T1Q = W[17]; T1S = T1Q * T1O; T1N = W[16]; T1P = T1N * T1O; Ip[WS(rs, 4)] = FNMS(T1Q, T1R, T1P); Im[WS(rs, 4)] = FMA(T1N, T1R, T1S); } { E T21, T1Y, T22, T1T, T1X; T21 = FMA(KP951056516, T20, T1Z); T1Y = W[5]; T22 = T1Y * T1W; T1T = W[4]; T1X = T1T * T1W; Ip[WS(rs, 1)] = FNMS(T1Y, T21, T1X); Im[WS(rs, 1)] = FMA(T1T, T21, T22); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 10}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, {48, 18, 54, 0} }; void X(codelet_hc2cb_10) (planner *p) { X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */ /* * This function contains 102 FP additions, 60 FP multiplications, * (or, 72 additions, 30 multiplications, 30 fused multiply/add), * 39 stack variables, 4 constants, and 40 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { E T3, T18, TJ, T1i, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, Tt, TA, T1w; E T1v, T1p, T1E, TM, TO; { E T1, T2, TH, TI; T1 = Rp[0]; T2 = Rm[WS(rs, 4)]; T3 = T1 + T2; T18 = T1 - T2; TH = Ip[0]; TI = Im[WS(rs, 4)]; TJ = TH - TI; T1i = TH + TI; } { E T6, T19, Tg, T1d, T9, T1a, Td, T1c; { E T4, T5, Te, Tf; T4 = Rp[WS(rs, 2)]; T5 = Rm[WS(rs, 2)]; T6 = T4 + T5; T19 = T4 - T5; Te = Rm[WS(rs, 3)]; Tf = Rp[WS(rs, 1)]; Tg = Te + Tf; T1d = Te - Tf; } { E T7, T8, Tb, Tc; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 3)]; T9 = T7 + T8; T1a = T7 - T8; Tb = Rp[WS(rs, 4)]; Tc = Rm[0]; Td = Tb + Tc; T1c = Tb - Tc; } TE = T6 - T9; TF = Td - Tg; T1B = T1c - T1d; T1A = T19 - T1a; { E T1b, T1e, Ta, Th; T1b = T19 + T1a; T1e = T1c + T1d; T1f = T1b + T1e; T1t = KP559016994 * (T1b - T1e); Ta = T6 + T9; Th = Td + Tg; Ti = Ta + Th; Tl = KP559016994 * (Ta - Th); } } { E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m; { E Tn, To, Tx, Ty; Tn = Ip[WS(rs, 2)]; To = Im[WS(rs, 2)]; Tp = Tn - To; T1j = Tn + To; Tx = Ip[WS(rs, 1)]; Ty = Im[WS(rs, 3)]; Tz = Tx - Ty; T1n = Tx + Ty; } { E Tq, Tr, Tu, Tv; Tq = Ip[WS(rs, 3)]; Tr = Im[WS(rs, 1)]; Ts = Tq - Tr; T1k = Tq + Tr; Tu = Ip[WS(rs, 4)]; Tv = Im[0]; Tw = Tu - Tv; T1m = Tu + Tv; } Tt = Tp - Ts; TA = Tw - Tz; T1w = T1m + T1n; T1v = T1j + T1k; { E T1l, T1o, TK, TL; T1l = T1j - T1k; T1o = T1m - T1n; T1p = T1l + T1o; T1E = KP559016994 * (T1l - T1o); TK = Tp + Ts; TL = Tw + Tz; TM = TK + TL; TO = KP559016994 * (TK - TL); } } Rp[0] = T3 + Ti; Rm[0] = TJ + TM; { E T1g, T1q, T17, T1h; T1g = T18 + T1f; T1q = T1i + T1p; T17 = W[8]; T1h = W[9]; Ip[WS(rs, 2)] = FNMS(T1h, T1q, T17 * T1g); Im[WS(rs, 2)] = FMA(T1h, T1g, T17 * T1q); } { E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk; TB = FNMS(KP951056516, TA, KP587785252 * Tt); TG = FNMS(KP951056516, TF, KP587785252 * TE); T11 = FMA(KP951056516, TE, KP587785252 * TF); TX = FMA(KP951056516, Tt, KP587785252 * TA); TN = FNMS(KP250000000, TM, TJ); TP = TN - TO; T10 = TO + TN; Tk = FNMS(KP250000000, Ti, T3); Tm = Tk - Tl; TW = Tl + Tk; { E TC, TQ, Tj, TD; TC = Tm - TB; TQ = TG + TP; Tj = W[2]; TD = W[3]; Rp[WS(rs, 1)] = FNMS(TD, TQ, Tj * TC); Rm[WS(rs, 1)] = FMA(TD, TC, Tj * TQ); } { E T14, T16, T13, T15; T14 = TW - TX; T16 = T11 + T10; T13 = W[10]; T15 = W[11]; Rp[WS(rs, 3)] = FNMS(T15, T16, T13 * T14); Rm[WS(rs, 3)] = FMA(T15, T14, T13 * T16); } { E TS, TU, TR, TT; TS = Tm + TB; TU = TP - TG; TR = W[14]; TT = W[15]; Rp[WS(rs, 4)] = FNMS(TT, TU, TR * TS); Rm[WS(rs, 4)] = FMA(TT, TS, TR * TU); } { E TY, T12, TV, TZ; TY = TW + TX; T12 = T10 - T11; TV = W[6]; TZ = W[7]; Rp[WS(rs, 2)] = FNMS(TZ, T12, TV * TY); Rm[WS(rs, 2)] = FMA(TZ, TY, TV * T12); } } { E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s; T1x = FNMS(KP951056516, T1w, KP587785252 * T1v); T1C = FNMS(KP951056516, T1B, KP587785252 * T1A); T1Q = FMA(KP951056516, T1A, KP587785252 * T1B); T1N = FMA(KP951056516, T1v, KP587785252 * T1w); T1D = FNMS(KP250000000, T1p, T1i); T1F = T1D - T1E; T1R = T1E + T1D; T1s = FNMS(KP250000000, T1f, T18); T1u = T1s - T1t; T1M = T1t + T1s; { E T1y, T1G, T1r, T1z; T1y = T1u - T1x; T1G = T1C + T1F; T1r = W[12]; T1z = W[13]; Ip[WS(rs, 3)] = FNMS(T1z, T1G, T1r * T1y); Im[WS(rs, 3)] = FMA(T1r, T1G, T1z * T1y); } { E T1U, T1W, T1T, T1V; T1U = T1M + T1N; T1W = T1R - T1Q; T1T = W[16]; T1V = W[17]; Ip[WS(rs, 4)] = FNMS(T1V, T1W, T1T * T1U); Im[WS(rs, 4)] = FMA(T1T, T1W, T1V * T1U); } { E T1I, T1K, T1H, T1J; T1I = T1u + T1x; T1K = T1F - T1C; T1H = W[4]; T1J = W[5]; Ip[WS(rs, 1)] = FNMS(T1J, T1K, T1H * T1I); Im[WS(rs, 1)] = FMA(T1H, T1K, T1J * T1I); } { E T1O, T1S, T1L, T1P; T1O = T1M - T1N; T1S = T1Q + T1R; T1L = W[0]; T1P = W[1]; Ip[0] = FNMS(T1P, T1S, T1L * T1O); Im[0] = FMA(T1L, T1S, T1P * T1O); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 10}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, {72, 30, 30, 0} }; void X(codelet_hc2cb_10) (planner *p) { X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT); } #endif