/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:52 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cb_12 -include rdft/scalar/hc2cb.h */ /* * This function contains 118 FP additions, 68 FP multiplications, * (or, 72 additions, 22 multiplications, 46 fused multiply/add), * 47 stack variables, 2 constants, and 48 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { E T18, T20, T1b, T21, T1s, T2a, T1p, T29, TI, TN, TO, Tb, To, T1f, T23; E T1i, T24, T1z, T2d, T1w, T2c, Tt, Ty, Tz, Tm, TD; { E T1, TE, T6, TM, T4, T1o, TH, T17, T9, T1r, TL, T1a; T1 = Rp[0]; TE = Ip[0]; T6 = Rm[WS(rs, 5)]; TM = Im[WS(rs, 5)]; { E T2, T3, TF, TG; T2 = Rp[WS(rs, 4)]; T3 = Rm[WS(rs, 3)]; T4 = T2 + T3; T1o = T2 - T3; TF = Ip[WS(rs, 4)]; TG = Im[WS(rs, 3)]; TH = TF - TG; T17 = TF + TG; } { E T7, T8, TJ, TK; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 2)]; T9 = T7 + T8; T1r = T7 - T8; TJ = Ip[WS(rs, 2)]; TK = Im[WS(rs, 1)]; TL = TJ - TK; T1a = TJ + TK; } { E T16, T19, T1q, T1n, T5, Ta; T16 = FNMS(KP500000000, T4, T1); T18 = FNMS(KP866025403, T17, T16); T20 = FMA(KP866025403, T17, T16); T19 = FNMS(KP500000000, T9, T6); T1b = FMA(KP866025403, T1a, T19); T21 = FNMS(KP866025403, T1a, T19); T1q = FMA(KP500000000, TL, TM); T1s = FNMS(KP866025403, T1r, T1q); T2a = FMA(KP866025403, T1r, T1q); T1n = FNMS(KP500000000, TH, TE); T1p = FMA(KP866025403, T1o, T1n); T29 = FNMS(KP866025403, T1o, T1n); TI = TE + TH; TN = TL - TM; TO = TI - TN; T5 = T1 + T4; Ta = T6 + T9; Tb = T5 + Ta; To = T5 - Ta; } } { E Tc, Tp, Th, Tx, Tf, T1v, Ts, T1e, Tk, T1y, Tw, T1h; Tc = Rp[WS(rs, 3)]; Tp = Ip[WS(rs, 3)]; Th = Rm[WS(rs, 2)]; Tx = Im[WS(rs, 2)]; { E Td, Te, Tq, Tr; Td = Rm[WS(rs, 4)]; Te = Rm[0]; Tf = Td + Te; T1v = Td - Te; Tq = Im[WS(rs, 4)]; Tr = Im[0]; Ts = Tq + Tr; T1e = Tq - Tr; } { E Ti, Tj, Tu, Tv; Ti = Rp[WS(rs, 1)]; Tj = Rp[WS(rs, 5)]; Tk = Ti + Tj; T1y = Ti - Tj; Tu = Ip[WS(rs, 1)]; Tv = Ip[WS(rs, 5)]; Tw = Tu + Tv; T1h = Tv - Tu; } { E T1d, T1g, T1x, T1u, Tg, Tl; T1d = FNMS(KP500000000, Tf, Tc); T1f = FMA(KP866025403, T1e, T1d); T23 = FNMS(KP866025403, T1e, T1d); T1g = FNMS(KP500000000, Tk, Th); T1i = FMA(KP866025403, T1h, T1g); T24 = FNMS(KP866025403, T1h, T1g); T1x = FMA(KP500000000, Tw, Tx); T1z = FNMS(KP866025403, T1y, T1x); T2d = FMA(KP866025403, T1y, T1x); T1u = FMA(KP500000000, Ts, Tp); T1w = FMA(KP866025403, T1v, T1u); T2c = FNMS(KP866025403, T1v, T1u); Tt = Tp - Ts; Ty = Tw - Tx; Tz = Tt - Ty; Tg = Tc + Tf; Tl = Th + Tk; Tm = Tg + Tl; TD = Tg - Tl; } } Rp[0] = Tb + Tm; { E TA, TP, TB, TQ, Tn, TC; TA = To - Tz; TP = TD + TO; Tn = W[16]; TB = Tn * TA; TQ = Tn * TP; TC = W[17]; Ip[WS(rs, 4)] = FNMS(TC, TP, TB); Im[WS(rs, 4)] = FMA(TC, TA, TQ); } { E TS, TV, TT, TW, TR, TU; TS = To + Tz; TV = TO - TD; TR = W[4]; TT = TR * TS; TW = TR * TV; TU = W[5]; Ip[WS(rs, 1)] = FNMS(TU, TV, TT); Im[WS(rs, 1)] = FMA(TU, TS, TW); } { E T11, T12, T13, TX, TZ, T10, T14, TY; T11 = TI + TN; T12 = Tt + Ty; T13 = T11 - T12; TY = Tb - Tm; TX = W[10]; TZ = TX * TY; T10 = W[11]; T14 = T10 * TY; Rm[0] = T11 + T12; Rm[WS(rs, 3)] = FMA(TX, T13, T14); Rp[WS(rs, 3)] = FNMS(T10, T13, TZ); } { E T1k, T1E, T1B, T1H; { E T1c, T1j, T1t, T1A; T1c = T18 + T1b; T1j = T1f + T1i; T1k = T1c - T1j; T1E = T1c + T1j; T1t = T1p - T1s; T1A = T1w - T1z; T1B = T1t - T1A; T1H = T1t + T1A; } { E T15, T1l, T1m, T1C; T15 = W[18]; T1l = T15 * T1k; T1m = W[19]; T1C = T1m * T1k; Rp[WS(rs, 5)] = FNMS(T1m, T1B, T1l); Rm[WS(rs, 5)] = FMA(T15, T1B, T1C); } { E T1D, T1F, T1G, T1I; T1D = W[6]; T1F = T1D * T1E; T1G = W[7]; T1I = T1G * T1E; Rp[WS(rs, 2)] = FNMS(T1G, T1H, T1F); Rm[WS(rs, 2)] = FMA(T1D, T1H, T1I); } } { E T26, T2i, T2f, T2l; { E T22, T25, T2b, T2e; T22 = T20 + T21; T25 = T23 + T24; T26 = T22 - T25; T2i = T22 + T25; T2b = T29 - T2a; T2e = T2c - T2d; T2f = T2b - T2e; T2l = T2b + T2e; } { E T1Z, T27, T28, T2g; T1Z = W[2]; T27 = T1Z * T26; T28 = W[3]; T2g = T28 * T26; Rp[WS(rs, 1)] = FNMS(T28, T2f, T27); Rm[WS(rs, 1)] = FMA(T1Z, T2f, T2g); } { E T2h, T2j, T2k, T2m; T2h = W[14]; T2j = T2h * T2i; T2k = W[15]; T2m = T2k * T2i; Rp[WS(rs, 4)] = FNMS(T2k, T2l, T2j); Rm[WS(rs, 4)] = FMA(T2h, T2l, T2m); } } { E T2q, T2y, T2v, T2B; { E T2o, T2p, T2t, T2u; T2o = T20 - T21; T2p = T2c + T2d; T2q = T2o - T2p; T2y = T2o + T2p; T2t = T29 + T2a; T2u = T23 - T24; T2v = T2t + T2u; T2B = T2t - T2u; } { E T2r, T2w, T2n, T2s; T2n = W[8]; T2r = T2n * T2q; T2w = T2n * T2v; T2s = W[9]; Ip[WS(rs, 2)] = FNMS(T2s, T2v, T2r); Im[WS(rs, 2)] = FMA(T2s, T2q, T2w); } { E T2z, T2C, T2x, T2A; T2x = W[20]; T2z = T2x * T2y; T2C = T2x * T2B; T2A = W[21]; Ip[WS(rs, 5)] = FNMS(T2A, T2B, T2z); Im[WS(rs, 5)] = FMA(T2A, T2y, T2C); } } { E T1M, T1U, T1R, T1X; { E T1K, T1L, T1P, T1Q; T1K = T18 - T1b; T1L = T1w + T1z; T1M = T1K - T1L; T1U = T1K + T1L; T1P = T1p + T1s; T1Q = T1f - T1i; T1R = T1P + T1Q; T1X = T1P - T1Q; } { E T1N, T1S, T1J, T1O; T1J = W[0]; T1N = T1J * T1M; T1S = T1J * T1R; T1O = W[1]; Ip[0] = FNMS(T1O, T1R, T1N); Im[0] = FMA(T1O, T1M, T1S); } { E T1V, T1Y, T1T, T1W; T1T = W[12]; T1V = T1T * T1U; T1Y = T1T * T1X; T1W = W[13]; Ip[WS(rs, 3)] = FNMS(T1W, T1X, T1V); Im[WS(rs, 3)] = FMA(T1W, T1U, T1Y); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 12}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 12, "hc2cb_12", twinstr, &GENUS, {72, 22, 46, 0} }; void X(codelet_hc2cb_12) (planner *p) { X(khc2c_register) (p, hc2cb_12, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cb_12 -include rdft/scalar/hc2cb.h */ /* * This function contains 118 FP additions, 60 FP multiplications, * (or, 88 additions, 30 multiplications, 30 fused multiply/add), * 39 stack variables, 2 constants, and 48 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { E T5, TH, T12, T1M, T1i, T1U, Tl, Ty, T1c, T1Y, T1s, T1Q, Ta, TM, T15; E T1N, T1l, T1V, Tg, Tt, T19, T1X, T1p, T1P; { E T1, TD, T4, T1g, TG, T11, T10, T1h; T1 = Rp[0]; TD = Ip[0]; { E T2, T3, TE, TF; T2 = Rp[WS(rs, 4)]; T3 = Rm[WS(rs, 3)]; T4 = T2 + T3; T1g = KP866025403 * (T2 - T3); TE = Ip[WS(rs, 4)]; TF = Im[WS(rs, 3)]; TG = TE - TF; T11 = KP866025403 * (TE + TF); } T5 = T1 + T4; TH = TD + TG; T10 = FNMS(KP500000000, T4, T1); T12 = T10 - T11; T1M = T10 + T11; T1h = FNMS(KP500000000, TG, TD); T1i = T1g + T1h; T1U = T1h - T1g; } { E Th, Tx, Tk, T1a, Tw, T1r, T1b, T1q; Th = Rm[WS(rs, 2)]; Tx = Im[WS(rs, 2)]; { E Ti, Tj, Tu, Tv; Ti = Rp[WS(rs, 1)]; Tj = Rp[WS(rs, 5)]; Tk = Ti + Tj; T1a = KP866025403 * (Ti - Tj); Tu = Ip[WS(rs, 1)]; Tv = Ip[WS(rs, 5)]; Tw = Tu + Tv; T1r = KP866025403 * (Tv - Tu); } Tl = Th + Tk; Ty = Tw - Tx; T1b = FMA(KP500000000, Tw, Tx); T1c = T1a - T1b; T1Y = T1a + T1b; T1q = FNMS(KP500000000, Tk, Th); T1s = T1q + T1r; T1Q = T1q - T1r; } { E T6, TL, T9, T1j, TK, T14, T13, T1k; T6 = Rm[WS(rs, 5)]; TL = Im[WS(rs, 5)]; { E T7, T8, TI, TJ; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 2)]; T9 = T7 + T8; T1j = KP866025403 * (T7 - T8); TI = Ip[WS(rs, 2)]; TJ = Im[WS(rs, 1)]; TK = TI - TJ; T14 = KP866025403 * (TI + TJ); } Ta = T6 + T9; TM = TK - TL; T13 = FNMS(KP500000000, T9, T6); T15 = T13 + T14; T1N = T13 - T14; T1k = FMA(KP500000000, TK, TL); T1l = T1j - T1k; T1V = T1j + T1k; } { E Tc, Tp, Tf, T17, Ts, T1o, T18, T1n; Tc = Rp[WS(rs, 3)]; Tp = Ip[WS(rs, 3)]; { E Td, Te, Tq, Tr; Td = Rm[WS(rs, 4)]; Te = Rm[0]; Tf = Td + Te; T17 = KP866025403 * (Td - Te); Tq = Im[WS(rs, 4)]; Tr = Im[0]; Ts = Tq + Tr; T1o = KP866025403 * (Tq - Tr); } Tg = Tc + Tf; Tt = Tp - Ts; T18 = FMA(KP500000000, Ts, Tp); T19 = T17 + T18; T1X = T18 - T17; T1n = FNMS(KP500000000, Tf, Tc); T1p = T1n + T1o; T1P = T1n - T1o; } { E Tb, Tm, TU, TW, TX, TY, TT, TV; Tb = T5 + Ta; Tm = Tg + Tl; TU = Tb - Tm; TW = TH + TM; TX = Tt + Ty; TY = TW - TX; Rp[0] = Tb + Tm; Rm[0] = TW + TX; TT = W[10]; TV = W[11]; Rp[WS(rs, 3)] = FNMS(TV, TY, TT * TU); Rm[WS(rs, 3)] = FMA(TV, TU, TT * TY); } { E TA, TQ, TO, TS; { E To, Tz, TC, TN; To = T5 - Ta; Tz = Tt - Ty; TA = To - Tz; TQ = To + Tz; TC = Tg - Tl; TN = TH - TM; TO = TC + TN; TS = TN - TC; } { E Tn, TB, TP, TR; Tn = W[16]; TB = W[17]; Ip[WS(rs, 4)] = FNMS(TB, TO, Tn * TA); Im[WS(rs, 4)] = FMA(Tn, TO, TB * TA); TP = W[4]; TR = W[5]; Ip[WS(rs, 1)] = FNMS(TR, TS, TP * TQ); Im[WS(rs, 1)] = FMA(TP, TS, TR * TQ); } } { E T28, T2e, T2c, T2g; { E T26, T27, T2a, T2b; T26 = T1M - T1N; T27 = T1X + T1Y; T28 = T26 - T27; T2e = T26 + T27; T2a = T1U + T1V; T2b = T1P - T1Q; T2c = T2a + T2b; T2g = T2a - T2b; } { E T25, T29, T2d, T2f; T25 = W[8]; T29 = W[9]; Ip[WS(rs, 2)] = FNMS(T29, T2c, T25 * T28); Im[WS(rs, 2)] = FMA(T25, T2c, T29 * T28); T2d = W[20]; T2f = W[21]; Ip[WS(rs, 5)] = FNMS(T2f, T2g, T2d * T2e); Im[WS(rs, 5)] = FMA(T2d, T2g, T2f * T2e); } } { E T1S, T22, T20, T24; { E T1O, T1R, T1W, T1Z; T1O = T1M + T1N; T1R = T1P + T1Q; T1S = T1O - T1R; T22 = T1O + T1R; T1W = T1U - T1V; T1Z = T1X - T1Y; T20 = T1W - T1Z; T24 = T1W + T1Z; } { E T1L, T1T, T21, T23; T1L = W[2]; T1T = W[3]; Rp[WS(rs, 1)] = FNMS(T1T, T20, T1L * T1S); Rm[WS(rs, 1)] = FMA(T1T, T1S, T1L * T20); T21 = W[14]; T23 = W[15]; Rp[WS(rs, 4)] = FNMS(T23, T24, T21 * T22); Rm[WS(rs, 4)] = FMA(T23, T22, T21 * T24); } } { E T1C, T1I, T1G, T1K; { E T1A, T1B, T1E, T1F; T1A = T12 + T15; T1B = T1p + T1s; T1C = T1A - T1B; T1I = T1A + T1B; T1E = T1i + T1l; T1F = T19 + T1c; T1G = T1E - T1F; T1K = T1E + T1F; } { E T1z, T1D, T1H, T1J; T1z = W[18]; T1D = W[19]; Rp[WS(rs, 5)] = FNMS(T1D, T1G, T1z * T1C); Rm[WS(rs, 5)] = FMA(T1D, T1C, T1z * T1G); T1H = W[6]; T1J = W[7]; Rp[WS(rs, 2)] = FNMS(T1J, T1K, T1H * T1I); Rm[WS(rs, 2)] = FMA(T1J, T1I, T1H * T1K); } } { E T1e, T1w, T1u, T1y; { E T16, T1d, T1m, T1t; T16 = T12 - T15; T1d = T19 - T1c; T1e = T16 - T1d; T1w = T16 + T1d; T1m = T1i - T1l; T1t = T1p - T1s; T1u = T1m + T1t; T1y = T1m - T1t; } { E TZ, T1f, T1v, T1x; TZ = W[0]; T1f = W[1]; Ip[0] = FNMS(T1f, T1u, TZ * T1e); Im[0] = FMA(TZ, T1u, T1f * T1e); T1v = W[12]; T1x = W[13]; Ip[WS(rs, 3)] = FNMS(T1x, T1y, T1v * T1w); Im[WS(rs, 3)] = FMA(T1v, T1y, T1x * T1w); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 12}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 12, "hc2cb_12", twinstr, &GENUS, {88, 30, 30, 0} }; void X(codelet_hc2cb_12) (planner *p) { X(khc2c_register) (p, hc2cb_12, &desc, HC2C_VIA_RDFT); } #endif