/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:54 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */ /* * This function contains 246 FP additions, 148 FP multiplications, * (or, 136 additions, 38 multiplications, 110 fused multiply/add), * 91 stack variables, 4 constants, and 80 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT m; for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { E T7, T4e, T4z, TE, T1t, T2W, T3z, T2l, T13, T3G, T3H, T1i, T2g, T4H, T4G; E T2d, T1B, T4u, T4r, T1A, T2s, T3l, T2t, T3s, T2m, T2n, T2o, T1u, T1v, T1w; E TC, T29, T3C, T3E, T4l, T4n, TL, TN, T3b, T3d, T4C, T4E; { E T3, T2U, T1p, T3x, T6, T3y, T1s, T2V; { E T1, T2, T1n, T1o; T1 = Rp[0]; T2 = Rm[WS(rs, 9)]; T3 = T1 + T2; T2U = T1 - T2; T1n = Ip[0]; T1o = Im[WS(rs, 9)]; T1p = T1n - T1o; T3x = T1n + T1o; } { E T4, T5, T1q, T1r; T4 = Rp[WS(rs, 5)]; T5 = Rm[WS(rs, 4)]; T6 = T4 + T5; T3y = T4 - T5; T1q = Ip[WS(rs, 5)]; T1r = Im[WS(rs, 4)]; T1s = T1q - T1r; T2V = T1q + T1r; } T7 = T3 + T6; T4e = T2U - T2V; T4z = T3y + T3x; TE = T3 - T6; T1t = T1p - T1s; T2W = T2U + T2V; T3z = T3x - T3y; T2l = T1p + T1s; } { E Te, T4f, T4p, TF, T1a, T2Z, T3o, T2b, TA, T4j, T4t, TJ, T12, T39, T3k; E T2f, Tl, T4g, T4q, TG, T1h, T32, T3r, T2c, Tt, T4i, T4s, TI, TV, T36; E T3h, T2e; { E Ta, T2X, T16, T3m, Td, T3n, T19, T2Y; { E T8, T9, T14, T15; T8 = Rp[WS(rs, 4)]; T9 = Rm[WS(rs, 5)]; Ta = T8 + T9; T2X = T8 - T9; T14 = Ip[WS(rs, 4)]; T15 = Im[WS(rs, 5)]; T16 = T14 - T15; T3m = T14 + T15; } { E Tb, Tc, T17, T18; Tb = Rp[WS(rs, 9)]; Tc = Rm[0]; Td = Tb + Tc; T3n = Tb - Tc; T17 = Ip[WS(rs, 9)]; T18 = Im[0]; T19 = T17 - T18; T2Y = T17 + T18; } Te = Ta + Td; T4f = T2X - T2Y; T4p = T3n + T3m; TF = Ta - Td; T1a = T16 - T19; T2Z = T2X + T2Y; T3o = T3m - T3n; T2b = T16 + T19; } { E Tw, T37, TY, T3j, Tz, T3i, T11, T38; { E Tu, Tv, TW, TX; Tu = Rm[WS(rs, 7)]; Tv = Rp[WS(rs, 2)]; Tw = Tu + Tv; T37 = Tu - Tv; TW = Ip[WS(rs, 2)]; TX = Im[WS(rs, 7)]; TY = TW - TX; T3j = TW + TX; } { E Tx, Ty, TZ, T10; Tx = Rm[WS(rs, 2)]; Ty = Rp[WS(rs, 7)]; Tz = Tx + Ty; T3i = Tx - Ty; TZ = Ip[WS(rs, 7)]; T10 = Im[WS(rs, 2)]; T11 = TZ - T10; T38 = TZ + T10; } TA = Tw + Tz; T4j = T37 + T38; T4t = T3i - T3j; TJ = Tw - Tz; T12 = TY - T11; T39 = T37 - T38; T3k = T3i + T3j; T2f = TY + T11; } { E Th, T30, T1d, T3q, Tk, T3p, T1g, T31; { E Tf, Tg, T1b, T1c; Tf = Rm[WS(rs, 3)]; Tg = Rp[WS(rs, 6)]; Th = Tf + Tg; T30 = Tf - Tg; T1b = Ip[WS(rs, 6)]; T1c = Im[WS(rs, 3)]; T1d = T1b - T1c; T3q = T1b + T1c; } { E Ti, Tj, T1e, T1f; Ti = Rp[WS(rs, 1)]; Tj = Rm[WS(rs, 8)]; Tk = Ti + Tj; T3p = Ti - Tj; T1e = Ip[WS(rs, 1)]; T1f = Im[WS(rs, 8)]; T1g = T1e - T1f; T31 = T1e + T1f; } Tl = Th + Tk; T4g = T30 - T31; T4q = T3p - T3q; TG = Th - Tk; T1h = T1d - T1g; T32 = T30 + T31; T3r = T3p + T3q; T2c = T1d + T1g; } { E Tp, T34, TR, T3f, Ts, T3g, TU, T35; { E Tn, To, TP, TQ; Tn = Rp[WS(rs, 8)]; To = Rm[WS(rs, 1)]; Tp = Tn + To; T34 = Tn - To; TP = Ip[WS(rs, 8)]; TQ = Im[WS(rs, 1)]; TR = TP - TQ; T3f = TP + TQ; } { E Tq, Tr, TS, TT; Tq = Rm[WS(rs, 6)]; Tr = Rp[WS(rs, 3)]; Ts = Tq + Tr; T3g = Tq - Tr; TS = Ip[WS(rs, 3)]; TT = Im[WS(rs, 6)]; TU = TS - TT; T35 = TS + TT; } Tt = Tp + Ts; T4i = T34 + T35; T4s = T3g + T3f; TI = Tp - Ts; TV = TR - TU; T36 = T34 - T35; T3h = T3f - T3g; T2e = TR + TU; } T13 = TV - T12; T3G = T36 - T39; T3H = T2Z - T32; T1i = T1a - T1h; T2g = T2e - T2f; T4H = T4i - T4j; T4G = T4f - T4g; T2d = T2b - T2c; T1B = TF - TG; T4u = T4s - T4t; T4r = T4p - T4q; T1A = TI - TJ; T2s = Te - Tl; T3l = T3h + T3k; T2t = Tt - TA; T3s = T3o + T3r; T2m = T2b + T2c; T2n = T2e + T2f; T2o = T2m + T2n; T1u = T1a + T1h; T1v = TV + T12; T1w = T1u + T1v; { E Tm, TB, TH, TK; Tm = Te + Tl; TB = Tt + TA; TC = Tm + TB; T29 = Tm - TB; { E T3A, T3B, T4h, T4k; T3A = T3o - T3r; T3B = T3h - T3k; T3C = T3A + T3B; T3E = T3A - T3B; T4h = T4f + T4g; T4k = T4i + T4j; T4l = T4h + T4k; T4n = T4h - T4k; } TH = TF + TG; TK = TI + TJ; TL = TH + TK; TN = TH - TK; { E T33, T3a, T4A, T4B; T33 = T2Z + T32; T3a = T36 + T39; T3b = T33 + T3a; T3d = T33 - T3a; T4A = T4p + T4q; T4B = T4s + T4t; T4C = T4A + T4B; T4E = T4A - T4B; } } } Rp[0] = T7 + TC; Rm[0] = T2l + T2o; { E T25, T21, T23, T24, T26, T22; T25 = T1t + T1w; T22 = TE + TL; T21 = W[18]; T23 = T21 * T22; T24 = W[19]; T26 = T24 * T22; Rp[WS(rs, 5)] = FNMS(T24, T25, T23); Rm[WS(rs, 5)] = FMA(T21, T25, T26); } { E T58, T5b, T59, T5c, T57, T5a; T58 = T4e + T4l; T5b = T4z + T4C; T57 = W[8]; T59 = T57 * T58; T5c = T57 * T5b; T5a = W[9]; Ip[WS(rs, 2)] = FNMS(T5a, T5b, T59); Im[WS(rs, 2)] = FMA(T5a, T58, T5c); } { E T48, T4b, T49, T4c, T47, T4a; T48 = T2W + T3b; T4b = T3z + T3C; T47 = W[28]; T49 = T47 * T48; T4c = T47 * T4b; T4a = W[29]; Ip[WS(rs, 7)] = FNMS(T4a, T4b, T49); Im[WS(rs, 7)] = FMA(T4a, T48, T4c); } { E T3u, T42, T3M, T3U, T3J, T45, T3P, T3Z; { E T3t, T3T, T3e, T3S, T3c; T3t = FNMS(KP618033988, T3s, T3l); T3T = FMA(KP618033988, T3l, T3s); T3c = FNMS(KP250000000, T3b, T2W); T3e = FNMS(KP559016994, T3d, T3c); T3S = FMA(KP559016994, T3d, T3c); T3u = FNMS(KP951056516, T3t, T3e); T42 = FMA(KP951056516, T3T, T3S); T3M = FMA(KP951056516, T3t, T3e); T3U = FNMS(KP951056516, T3T, T3S); } { E T3I, T3Y, T3F, T3X, T3D; T3I = FNMS(KP618033988, T3H, T3G); T3Y = FMA(KP618033988, T3G, T3H); T3D = FNMS(KP250000000, T3C, T3z); T3F = FNMS(KP559016994, T3E, T3D); T3X = FMA(KP559016994, T3E, T3D); T3J = FMA(KP951056516, T3I, T3F); T45 = FNMS(KP951056516, T3Y, T3X); T3P = FNMS(KP951056516, T3I, T3F); T3Z = FMA(KP951056516, T3Y, T3X); } { E T3v, T3K, T2T, T3w; T2T = W[4]; T3v = T2T * T3u; T3K = T2T * T3J; T3w = W[5]; Ip[WS(rs, 1)] = FNMS(T3w, T3J, T3v); Im[WS(rs, 1)] = FMA(T3w, T3u, T3K); } { E T43, T46, T41, T44; T41 = W[36]; T43 = T41 * T42; T46 = T41 * T45; T44 = W[37]; Ip[WS(rs, 9)] = FNMS(T44, T45, T43); Im[WS(rs, 9)] = FMA(T44, T42, T46); } { E T3N, T3Q, T3L, T3O; T3L = W[12]; T3N = T3L * T3M; T3Q = T3L * T3P; T3O = W[13]; Ip[WS(rs, 3)] = FNMS(T3O, T3P, T3N); Im[WS(rs, 3)] = FMA(T3O, T3M, T3Q); } { E T3V, T40, T3R, T3W; T3R = W[20]; T3V = T3R * T3U; T40 = T3R * T3Z; T3W = W[21]; Ip[WS(rs, 5)] = FNMS(T3W, T3Z, T3V); Im[WS(rs, 5)] = FMA(T3W, T3U, T40); } } { E T4w, T52, T4M, T4U, T4J, T55, T4P, T4Z; { E T4v, T4T, T4o, T4S, T4m; T4v = FMA(KP618033988, T4u, T4r); T4T = FNMS(KP618033988, T4r, T4u); T4m = FNMS(KP250000000, T4l, T4e); T4o = FMA(KP559016994, T4n, T4m); T4S = FNMS(KP559016994, T4n, T4m); T4w = FNMS(KP951056516, T4v, T4o); T52 = FMA(KP951056516, T4T, T4S); T4M = FMA(KP951056516, T4v, T4o); T4U = FNMS(KP951056516, T4T, T4S); } { E T4I, T4Y, T4F, T4X, T4D; T4I = FMA(KP618033988, T4H, T4G); T4Y = FNMS(KP618033988, T4G, T4H); T4D = FNMS(KP250000000, T4C, T4z); T4F = FMA(KP559016994, T4E, T4D); T4X = FNMS(KP559016994, T4E, T4D); T4J = FMA(KP951056516, T4I, T4F); T55 = FNMS(KP951056516, T4Y, T4X); T4P = FNMS(KP951056516, T4I, T4F); T4Z = FMA(KP951056516, T4Y, T4X); } { E T4x, T4K, T4d, T4y; T4d = W[0]; T4x = T4d * T4w; T4K = T4d * T4J; T4y = W[1]; Ip[0] = FNMS(T4y, T4J, T4x); Im[0] = FMA(T4y, T4w, T4K); } { E T53, T56, T51, T54; T51 = W[32]; T53 = T51 * T52; T56 = T51 * T55; T54 = W[33]; Ip[WS(rs, 8)] = FNMS(T54, T55, T53); Im[WS(rs, 8)] = FMA(T54, T52, T56); } { E T4N, T4Q, T4L, T4O; T4L = W[16]; T4N = T4L * T4M; T4Q = T4L * T4P; T4O = W[17]; Ip[WS(rs, 4)] = FNMS(T4O, T4P, T4N); Im[WS(rs, 4)] = FMA(T4O, T4M, T4Q); } { E T4V, T50, T4R, T4W; T4R = W[24]; T4V = T4R * T4U; T50 = T4R * T4Z; T4W = W[25]; Ip[WS(rs, 6)] = FNMS(T4W, T4Z, T4V); Im[WS(rs, 6)] = FMA(T4W, T4U, T50); } } { E T2u, T2K, T2r, T2J, T2i, T2O, T2y, T2G, T2p, T2q; T2u = FMA(KP618033988, T2t, T2s); T2K = FNMS(KP618033988, T2s, T2t); T2p = FNMS(KP250000000, T2o, T2l); T2q = T2m - T2n; T2r = FMA(KP559016994, T2q, T2p); T2J = FNMS(KP559016994, T2q, T2p); { E T2h, T2F, T2a, T2E, T28; T2h = FMA(KP618033988, T2g, T2d); T2F = FNMS(KP618033988, T2d, T2g); T28 = FNMS(KP250000000, TC, T7); T2a = FMA(KP559016994, T29, T28); T2E = FNMS(KP559016994, T29, T28); T2i = FMA(KP951056516, T2h, T2a); T2O = FMA(KP951056516, T2F, T2E); T2y = FNMS(KP951056516, T2h, T2a); T2G = FNMS(KP951056516, T2F, T2E); } { E T2v, T2k, T2w, T27, T2j; T2v = FNMS(KP951056516, T2u, T2r); T2k = W[7]; T2w = T2k * T2i; T27 = W[6]; T2j = T27 * T2i; Rp[WS(rs, 2)] = FNMS(T2k, T2v, T2j); Rm[WS(rs, 2)] = FMA(T27, T2v, T2w); } { E T2R, T2Q, T2S, T2N, T2P; T2R = FNMS(KP951056516, T2K, T2J); T2Q = W[23]; T2S = T2Q * T2O; T2N = W[22]; T2P = T2N * T2O; Rp[WS(rs, 6)] = FNMS(T2Q, T2R, T2P); Rm[WS(rs, 6)] = FMA(T2N, T2R, T2S); } { E T2B, T2A, T2C, T2x, T2z; T2B = FMA(KP951056516, T2u, T2r); T2A = W[31]; T2C = T2A * T2y; T2x = W[30]; T2z = T2x * T2y; Rp[WS(rs, 8)] = FNMS(T2A, T2B, T2z); Rm[WS(rs, 8)] = FMA(T2x, T2B, T2C); } { E T2L, T2I, T2M, T2D, T2H; T2L = FMA(KP951056516, T2K, T2J); T2I = W[15]; T2M = T2I * T2G; T2D = W[14]; T2H = T2D * T2G; Rp[WS(rs, 4)] = FNMS(T2I, T2L, T2H); Rm[WS(rs, 4)] = FMA(T2D, T2L, T2M); } } { E T1C, T1S, T1z, T1R, T1k, T1W, T1G, T1O, T1x, T1y; T1C = FNMS(KP618033988, T1B, T1A); T1S = FMA(KP618033988, T1A, T1B); T1x = FNMS(KP250000000, T1w, T1t); T1y = T1u - T1v; T1z = FNMS(KP559016994, T1y, T1x); T1R = FMA(KP559016994, T1y, T1x); { E T1j, T1N, TO, T1M, TM; T1j = FNMS(KP618033988, T1i, T13); T1N = FMA(KP618033988, T13, T1i); TM = FNMS(KP250000000, TL, TE); TO = FNMS(KP559016994, TN, TM); T1M = FMA(KP559016994, TN, TM); T1k = FMA(KP951056516, T1j, TO); T1W = FMA(KP951056516, T1N, T1M); T1G = FNMS(KP951056516, T1j, TO); T1O = FNMS(KP951056516, T1N, T1M); } { E T1D, T1m, T1E, TD, T1l; T1D = FNMS(KP951056516, T1C, T1z); T1m = W[3]; T1E = T1m * T1k; TD = W[2]; T1l = TD * T1k; Rp[WS(rs, 1)] = FNMS(T1m, T1D, T1l); Rm[WS(rs, 1)] = FMA(TD, T1D, T1E); } { E T1Z, T1Y, T20, T1V, T1X; T1Z = FNMS(KP951056516, T1S, T1R); T1Y = W[27]; T20 = T1Y * T1W; T1V = W[26]; T1X = T1V * T1W; Rp[WS(rs, 7)] = FNMS(T1Y, T1Z, T1X); Rm[WS(rs, 7)] = FMA(T1V, T1Z, T20); } { E T1J, T1I, T1K, T1F, T1H; T1J = FMA(KP951056516, T1C, T1z); T1I = W[35]; T1K = T1I * T1G; T1F = W[34]; T1H = T1F * T1G; Rp[WS(rs, 9)] = FNMS(T1I, T1J, T1H); Rm[WS(rs, 9)] = FMA(T1F, T1J, T1K); } { E T1T, T1Q, T1U, T1L, T1P; T1T = FMA(KP951056516, T1S, T1R); T1Q = W[11]; T1U = T1Q * T1O; T1L = W[10]; T1P = T1L * T1O; Rp[WS(rs, 3)] = FNMS(T1Q, T1T, T1P); Rm[WS(rs, 3)] = FMA(T1L, T1T, T1U); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 20}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, {136, 38, 110, 0} }; void X(codelet_hc2cb_20) (planner *p) { X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */ /* * This function contains 246 FP additions, 124 FP multiplications, * (or, 184 additions, 62 multiplications, 62 fused multiply/add), * 97 stack variables, 4 constants, and 80 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT m; for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { E T7, T3T, T49, TE, T1v, T2T, T3g, T2d, T13, T3n, T3o, T1i, T26, T4e, T4d; E T23, T1n, T42, T3Z, T1m, T2h, T2I, T2i, T2P, T30, T37, T38, Tm, TB, TC; E T46, T47, T4a, T2a, T2b, T2e, T1w, T1x, T1y, T3O, T3R, T3U, T3h, T3i, T3j; E TH, TK, TL; { E T3, T2R, T1r, T3e, T6, T3f, T1u, T2S; { E T1, T2, T1p, T1q; T1 = Rp[0]; T2 = Rm[WS(rs, 9)]; T3 = T1 + T2; T2R = T1 - T2; T1p = Ip[0]; T1q = Im[WS(rs, 9)]; T1r = T1p - T1q; T3e = T1p + T1q; } { E T4, T5, T1s, T1t; T4 = Rp[WS(rs, 5)]; T5 = Rm[WS(rs, 4)]; T6 = T4 + T5; T3f = T4 - T5; T1s = Ip[WS(rs, 5)]; T1t = Im[WS(rs, 4)]; T1u = T1s - T1t; T2S = T1s + T1t; } T7 = T3 + T6; T3T = T2R - T2S; T49 = T3f + T3e; TE = T3 - T6; T1v = T1r - T1u; T2T = T2R + T2S; T3g = T3e - T3f; T2d = T1r + T1u; } { E Te, T3M, T3X, TF, TV, T2E, T2W, T21, TA, T3Q, T41, TJ, T1h, T2O, T36; E T25, Tl, T3N, T3Y, TG, T12, T2H, T2Z, T22, Tt, T3P, T40, TI, T1a, T2L; E T33, T24; { E Ta, T2U, TR, T2C, Td, T2D, TU, T2V; { E T8, T9, TP, TQ; T8 = Rp[WS(rs, 4)]; T9 = Rm[WS(rs, 5)]; Ta = T8 + T9; T2U = T8 - T9; TP = Ip[WS(rs, 4)]; TQ = Im[WS(rs, 5)]; TR = TP - TQ; T2C = TP + TQ; } { E Tb, Tc, TS, TT; Tb = Rp[WS(rs, 9)]; Tc = Rm[0]; Td = Tb + Tc; T2D = Tb - Tc; TS = Ip[WS(rs, 9)]; TT = Im[0]; TU = TS - TT; T2V = TS + TT; } Te = Ta + Td; T3M = T2U - T2V; T3X = T2D + T2C; TF = Ta - Td; TV = TR - TU; T2E = T2C - T2D; T2W = T2U + T2V; T21 = TR + TU; } { E Tw, T34, T1d, T2N, Tz, T2M, T1g, T35; { E Tu, Tv, T1b, T1c; Tu = Rm[WS(rs, 7)]; Tv = Rp[WS(rs, 2)]; Tw = Tu + Tv; T34 = Tu - Tv; T1b = Ip[WS(rs, 2)]; T1c = Im[WS(rs, 7)]; T1d = T1b - T1c; T2N = T1b + T1c; } { E Tx, Ty, T1e, T1f; Tx = Rm[WS(rs, 2)]; Ty = Rp[WS(rs, 7)]; Tz = Tx + Ty; T2M = Tx - Ty; T1e = Ip[WS(rs, 7)]; T1f = Im[WS(rs, 2)]; T1g = T1e - T1f; T35 = T1e + T1f; } TA = Tw + Tz; T3Q = T34 + T35; T41 = T2M - T2N; TJ = Tw - Tz; T1h = T1d - T1g; T2O = T2M + T2N; T36 = T34 - T35; T25 = T1d + T1g; } { E Th, T2X, TY, T2G, Tk, T2F, T11, T2Y; { E Tf, Tg, TW, TX; Tf = Rm[WS(rs, 3)]; Tg = Rp[WS(rs, 6)]; Th = Tf + Tg; T2X = Tf - Tg; TW = Ip[WS(rs, 6)]; TX = Im[WS(rs, 3)]; TY = TW - TX; T2G = TW + TX; } { E Ti, Tj, TZ, T10; Ti = Rp[WS(rs, 1)]; Tj = Rm[WS(rs, 8)]; Tk = Ti + Tj; T2F = Ti - Tj; TZ = Ip[WS(rs, 1)]; T10 = Im[WS(rs, 8)]; T11 = TZ - T10; T2Y = TZ + T10; } Tl = Th + Tk; T3N = T2X - T2Y; T3Y = T2F - T2G; TG = Th - Tk; T12 = TY - T11; T2H = T2F + T2G; T2Z = T2X + T2Y; T22 = TY + T11; } { E Tp, T31, T16, T2J, Ts, T2K, T19, T32; { E Tn, To, T14, T15; Tn = Rp[WS(rs, 8)]; To = Rm[WS(rs, 1)]; Tp = Tn + To; T31 = Tn - To; T14 = Ip[WS(rs, 8)]; T15 = Im[WS(rs, 1)]; T16 = T14 - T15; T2J = T14 + T15; } { E Tq, Tr, T17, T18; Tq = Rm[WS(rs, 6)]; Tr = Rp[WS(rs, 3)]; Ts = Tq + Tr; T2K = Tq - Tr; T17 = Ip[WS(rs, 3)]; T18 = Im[WS(rs, 6)]; T19 = T17 - T18; T32 = T17 + T18; } Tt = Tp + Ts; T3P = T31 + T32; T40 = T2K + T2J; TI = Tp - Ts; T1a = T16 - T19; T2L = T2J - T2K; T33 = T31 - T32; T24 = T16 + T19; } T13 = TV - T12; T3n = T2W - T2Z; T3o = T33 - T36; T1i = T1a - T1h; T26 = T24 - T25; T4e = T3P - T3Q; T4d = T3M - T3N; T23 = T21 - T22; T1n = TI - TJ; T42 = T40 - T41; T3Z = T3X - T3Y; T1m = TF - TG; T2h = Te - Tl; T2I = T2E + T2H; T2i = Tt - TA; T2P = T2L + T2O; T30 = T2W + T2Z; T37 = T33 + T36; T38 = T30 + T37; Tm = Te + Tl; TB = Tt + TA; TC = Tm + TB; T46 = T3X + T3Y; T47 = T40 + T41; T4a = T46 + T47; T2a = T21 + T22; T2b = T24 + T25; T2e = T2a + T2b; T1w = TV + T12; T1x = T1a + T1h; T1y = T1w + T1x; T3O = T3M + T3N; T3R = T3P + T3Q; T3U = T3O + T3R; T3h = T2E - T2H; T3i = T2L - T2O; T3j = T3h + T3i; TH = TF + TG; TK = TI + TJ; TL = TH + TK; } Rp[0] = T7 + TC; Rm[0] = T2d + T2e; { E T1U, T1W, T1T, T1V; T1U = TE + TL; T1W = T1v + T1y; T1T = W[18]; T1V = W[19]; Rp[WS(rs, 5)] = FNMS(T1V, T1W, T1T * T1U); Rm[WS(rs, 5)] = FMA(T1V, T1U, T1T * T1W); } { E T4y, T4A, T4x, T4z; T4y = T3T + T3U; T4A = T49 + T4a; T4x = W[8]; T4z = W[9]; Ip[WS(rs, 2)] = FNMS(T4z, T4A, T4x * T4y); Im[WS(rs, 2)] = FMA(T4x, T4A, T4z * T4y); } { E T3I, T3K, T3H, T3J; T3I = T2T + T38; T3K = T3g + T3j; T3H = W[28]; T3J = W[29]; Ip[WS(rs, 7)] = FNMS(T3J, T3K, T3H * T3I); Im[WS(rs, 7)] = FMA(T3H, T3K, T3J * T3I); } { E T27, T2j, T2v, T2r, T2g, T2u, T20, T2q; T27 = FMA(KP951056516, T23, KP587785252 * T26); T2j = FMA(KP951056516, T2h, KP587785252 * T2i); T2v = FNMS(KP951056516, T2i, KP587785252 * T2h); T2r = FNMS(KP951056516, T26, KP587785252 * T23); { E T2c, T2f, T1Y, T1Z; T2c = KP559016994 * (T2a - T2b); T2f = FNMS(KP250000000, T2e, T2d); T2g = T2c + T2f; T2u = T2f - T2c; T1Y = KP559016994 * (Tm - TB); T1Z = FNMS(KP250000000, TC, T7); T20 = T1Y + T1Z; T2q = T1Z - T1Y; } { E T28, T2k, T1X, T29; T28 = T20 + T27; T2k = T2g - T2j; T1X = W[6]; T29 = W[7]; Rp[WS(rs, 2)] = FNMS(T29, T2k, T1X * T28); Rm[WS(rs, 2)] = FMA(T29, T28, T1X * T2k); } { E T2y, T2A, T2x, T2z; T2y = T2q - T2r; T2A = T2v + T2u; T2x = W[22]; T2z = W[23]; Rp[WS(rs, 6)] = FNMS(T2z, T2A, T2x * T2y); Rm[WS(rs, 6)] = FMA(T2z, T2y, T2x * T2A); } { E T2m, T2o, T2l, T2n; T2m = T20 - T27; T2o = T2j + T2g; T2l = W[30]; T2n = W[31]; Rp[WS(rs, 8)] = FNMS(T2n, T2o, T2l * T2m); Rm[WS(rs, 8)] = FMA(T2n, T2m, T2l * T2o); } { E T2s, T2w, T2p, T2t; T2s = T2q + T2r; T2w = T2u - T2v; T2p = W[14]; T2t = W[15]; Rp[WS(rs, 4)] = FNMS(T2t, T2w, T2p * T2s); Rm[WS(rs, 4)] = FMA(T2t, T2s, T2p * T2w); } } { E T43, T4f, T4r, T4m, T4c, T4q, T3W, T4n; T43 = FMA(KP951056516, T3Z, KP587785252 * T42); T4f = FMA(KP951056516, T4d, KP587785252 * T4e); T4r = FNMS(KP951056516, T4e, KP587785252 * T4d); T4m = FNMS(KP951056516, T42, KP587785252 * T3Z); { E T48, T4b, T3S, T3V; T48 = KP559016994 * (T46 - T47); T4b = FNMS(KP250000000, T4a, T49); T4c = T48 + T4b; T4q = T4b - T48; T3S = KP559016994 * (T3O - T3R); T3V = FNMS(KP250000000, T3U, T3T); T3W = T3S + T3V; T4n = T3V - T3S; } { E T44, T4g, T3L, T45; T44 = T3W - T43; T4g = T4c + T4f; T3L = W[0]; T45 = W[1]; Ip[0] = FNMS(T45, T4g, T3L * T44); Im[0] = FMA(T3L, T4g, T45 * T44); } { E T4u, T4w, T4t, T4v; T4u = T4n - T4m; T4w = T4q + T4r; T4t = W[32]; T4v = W[33]; Ip[WS(rs, 8)] = FNMS(T4v, T4w, T4t * T4u); Im[WS(rs, 8)] = FMA(T4t, T4w, T4v * T4u); } { E T4i, T4k, T4h, T4j; T4i = T43 + T3W; T4k = T4c - T4f; T4h = W[16]; T4j = W[17]; Ip[WS(rs, 4)] = FNMS(T4j, T4k, T4h * T4i); Im[WS(rs, 4)] = FMA(T4h, T4k, T4j * T4i); } { E T4o, T4s, T4l, T4p; T4o = T4m + T4n; T4s = T4q - T4r; T4l = W[24]; T4p = W[25]; Ip[WS(rs, 6)] = FNMS(T4p, T4s, T4l * T4o); Im[WS(rs, 6)] = FMA(T4l, T4s, T4p * T4o); } } { E T1j, T1o, T1M, T1J, T1B, T1N, TO, T1I; T1j = FNMS(KP951056516, T1i, KP587785252 * T13); T1o = FNMS(KP951056516, T1n, KP587785252 * T1m); T1M = FMA(KP951056516, T1m, KP587785252 * T1n); T1J = FMA(KP951056516, T13, KP587785252 * T1i); { E T1z, T1A, TM, TN; T1z = FNMS(KP250000000, T1y, T1v); T1A = KP559016994 * (T1w - T1x); T1B = T1z - T1A; T1N = T1A + T1z; TM = FNMS(KP250000000, TL, TE); TN = KP559016994 * (TH - TK); TO = TM - TN; T1I = TN + TM; } { E T1k, T1C, TD, T1l; T1k = TO - T1j; T1C = T1o + T1B; TD = W[2]; T1l = W[3]; Rp[WS(rs, 1)] = FNMS(T1l, T1C, TD * T1k); Rm[WS(rs, 1)] = FMA(T1l, T1k, TD * T1C); } { E T1Q, T1S, T1P, T1R; T1Q = T1I + T1J; T1S = T1N - T1M; T1P = W[26]; T1R = W[27]; Rp[WS(rs, 7)] = FNMS(T1R, T1S, T1P * T1Q); Rm[WS(rs, 7)] = FMA(T1R, T1Q, T1P * T1S); } { E T1E, T1G, T1D, T1F; T1E = TO + T1j; T1G = T1B - T1o; T1D = W[34]; T1F = W[35]; Rp[WS(rs, 9)] = FNMS(T1F, T1G, T1D * T1E); Rm[WS(rs, 9)] = FMA(T1F, T1E, T1D * T1G); } { E T1K, T1O, T1H, T1L; T1K = T1I - T1J; T1O = T1M + T1N; T1H = W[10]; T1L = W[11]; Rp[WS(rs, 3)] = FNMS(T1L, T1O, T1H * T1K); Rm[WS(rs, 3)] = FMA(T1L, T1K, T1H * T1O); } } { E T2Q, T3p, T3B, T3x, T3m, T3A, T3b, T3w; T2Q = FNMS(KP951056516, T2P, KP587785252 * T2I); T3p = FNMS(KP951056516, T3o, KP587785252 * T3n); T3B = FMA(KP951056516, T3n, KP587785252 * T3o); T3x = FMA(KP951056516, T2I, KP587785252 * T2P); { E T3k, T3l, T39, T3a; T3k = FNMS(KP250000000, T3j, T3g); T3l = KP559016994 * (T3h - T3i); T3m = T3k - T3l; T3A = T3l + T3k; T39 = FNMS(KP250000000, T38, T2T); T3a = KP559016994 * (T30 - T37); T3b = T39 - T3a; T3w = T3a + T39; } { E T3c, T3q, T2B, T3d; T3c = T2Q + T3b; T3q = T3m - T3p; T2B = W[4]; T3d = W[5]; Ip[WS(rs, 1)] = FNMS(T3d, T3q, T2B * T3c); Im[WS(rs, 1)] = FMA(T2B, T3q, T3d * T3c); } { E T3E, T3G, T3D, T3F; T3E = T3x + T3w; T3G = T3A - T3B; T3D = W[36]; T3F = W[37]; Ip[WS(rs, 9)] = FNMS(T3F, T3G, T3D * T3E); Im[WS(rs, 9)] = FMA(T3D, T3G, T3F * T3E); } { E T3s, T3u, T3r, T3t; T3s = T3b - T2Q; T3u = T3m + T3p; T3r = W[12]; T3t = W[13]; Ip[WS(rs, 3)] = FNMS(T3t, T3u, T3r * T3s); Im[WS(rs, 3)] = FMA(T3r, T3u, T3t * T3s); } { E T3y, T3C, T3v, T3z; T3y = T3w - T3x; T3C = T3A + T3B; T3v = W[20]; T3z = W[21]; Ip[WS(rs, 5)] = FNMS(T3z, T3C, T3v * T3y); Im[WS(rs, 5)] = FMA(T3v, T3C, T3z * T3y); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 20}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, {184, 62, 62, 0} }; void X(codelet_hc2cb_20) (planner *p) { X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT); } #endif