/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:51 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include rdft/scalar/hc2cb.h */ /* * This function contains 66 FP additions, 36 FP multiplications, * (or, 44 additions, 14 multiplications, 22 fused multiply/add), * 33 stack variables, 1 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { E T7, T1i, T1n, Tk, TD, TV, T1b, TQ, Te, T1e, T1o, T1j, TE, TF, TR; E Tv, TW; { E T3, Tg, TC, T19, T6, Tz, Tj, T1a; { E T1, T2, TA, TB; T1 = Rp[0]; T2 = Rm[WS(rs, 3)]; T3 = T1 + T2; Tg = T1 - T2; TA = Ip[0]; TB = Im[WS(rs, 3)]; TC = TA + TB; T19 = TA - TB; } { E T4, T5, Th, Ti; T4 = Rp[WS(rs, 2)]; T5 = Rm[WS(rs, 1)]; T6 = T4 + T5; Tz = T4 - T5; Th = Ip[WS(rs, 2)]; Ti = Im[WS(rs, 1)]; Tj = Th + Ti; T1a = Th - Ti; } T7 = T3 + T6; T1i = T3 - T6; T1n = T19 - T1a; Tk = Tg - Tj; TD = Tz + TC; TV = TC - Tz; T1b = T19 + T1a; TQ = Tg + Tj; } { E Ta, Tl, To, T1c, Td, Tq, Tt, T1d, Tp, Tu; { E T8, T9, Tm, Tn; T8 = Rp[WS(rs, 1)]; T9 = Rm[WS(rs, 2)]; Ta = T8 + T9; Tl = T8 - T9; Tm = Ip[WS(rs, 1)]; Tn = Im[WS(rs, 2)]; To = Tm + Tn; T1c = Tm - Tn; } { E Tb, Tc, Tr, Ts; Tb = Rm[0]; Tc = Rp[WS(rs, 3)]; Td = Tb + Tc; Tq = Tb - Tc; Tr = Ip[WS(rs, 3)]; Ts = Im[0]; Tt = Tr + Ts; T1d = Tr - Ts; } Te = Ta + Td; T1e = T1c + T1d; T1o = Ta - Td; T1j = T1d - T1c; TE = Tl + To; TF = Tq + Tt; TR = TE + TF; Tp = Tl - To; Tu = Tq - Tt; Tv = Tp + Tu; TW = Tp - Tu; } Rp[0] = T7 + Te; Rm[0] = T1b + T1e; { E TS, TX, TT, TY, TP, TU; TS = FNMS(KP707106781, TR, TQ); TX = FMA(KP707106781, TW, TV); TP = W[4]; TT = TP * TS; TY = TP * TX; TU = W[5]; Ip[WS(rs, 1)] = FNMS(TU, TX, TT); Im[WS(rs, 1)] = FMA(TU, TS, TY); } { E T1s, T1v, T1t, T1w, T1r, T1u; T1s = T1i + T1j; T1v = T1o + T1n; T1r = W[2]; T1t = T1r * T1s; T1w = T1r * T1v; T1u = W[3]; Rp[WS(rs, 1)] = FNMS(T1u, T1v, T1t); Rm[WS(rs, 1)] = FMA(T1u, T1s, T1w); } { E T10, T13, T11, T14, TZ, T12; T10 = FMA(KP707106781, TR, TQ); T13 = FNMS(KP707106781, TW, TV); TZ = W[12]; T11 = TZ * T10; T14 = TZ * T13; T12 = W[13]; Ip[WS(rs, 3)] = FNMS(T12, T13, T11); Im[WS(rs, 3)] = FMA(T12, T10, T14); } { E T1f, T15, T17, T18, T1g, T16; T1f = T1b - T1e; T16 = T7 - Te; T15 = W[6]; T17 = T15 * T16; T18 = W[7]; T1g = T18 * T16; Rp[WS(rs, 2)] = FNMS(T18, T1f, T17); Rm[WS(rs, 2)] = FMA(T15, T1f, T1g); } { E T1k, T1p, T1l, T1q, T1h, T1m; T1k = T1i - T1j; T1p = T1n - T1o; T1h = W[10]; T1l = T1h * T1k; T1q = T1h * T1p; T1m = W[11]; Rp[WS(rs, 3)] = FNMS(T1m, T1p, T1l); Rm[WS(rs, 3)] = FMA(T1m, T1k, T1q); } { E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw; TG = TE - TF; TH = FNMS(KP707106781, TG, TD); TN = FMA(KP707106781, TG, TD); TK = FMA(KP707106781, Tv, Tk); TJ = W[0]; TL = TJ * TK; TM = W[1]; TO = TM * TK; Tw = FNMS(KP707106781, Tv, Tk); Tf = W[8]; Tx = Tf * Tw; Ty = W[9]; TI = Ty * Tw; Ip[WS(rs, 2)] = FNMS(Ty, TH, Tx); Im[WS(rs, 2)] = FMA(Tf, TH, TI); Ip[0] = FNMS(TM, TN, TL); Im[0] = FMA(TJ, TN, TO); } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 8}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {44, 14, 22, 0} }; void X(codelet_hc2cb_8) (planner *p) { X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include rdft/scalar/hc2cb.h */ /* * This function contains 66 FP additions, 32 FP multiplications, * (or, 52 additions, 18 multiplications, 14 fused multiply/add), * 30 stack variables, 1 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { E T7, T18, T1c, To, Ty, TM, TY, TC, Te, TZ, T10, Tv, Tz, TP, TS; E TD; { E T3, TK, Tk, TX, T6, TW, Tn, TL; { E T1, T2, Ti, Tj; T1 = Rp[0]; T2 = Rm[WS(rs, 3)]; T3 = T1 + T2; TK = T1 - T2; Ti = Ip[0]; Tj = Im[WS(rs, 3)]; Tk = Ti - Tj; TX = Ti + Tj; } { E T4, T5, Tl, Tm; T4 = Rp[WS(rs, 2)]; T5 = Rm[WS(rs, 1)]; T6 = T4 + T5; TW = T4 - T5; Tl = Ip[WS(rs, 2)]; Tm = Im[WS(rs, 1)]; Tn = Tl - Tm; TL = Tl + Tm; } T7 = T3 + T6; T18 = TK + TL; T1c = TX - TW; To = Tk + Tn; Ty = T3 - T6; TM = TK - TL; TY = TW + TX; TC = Tk - Tn; } { E Ta, TN, Tr, TO, Td, TQ, Tu, TR; { E T8, T9, Tp, Tq; T8 = Rp[WS(rs, 1)]; T9 = Rm[WS(rs, 2)]; Ta = T8 + T9; TN = T8 - T9; Tp = Ip[WS(rs, 1)]; Tq = Im[WS(rs, 2)]; Tr = Tp - Tq; TO = Tp + Tq; } { E Tb, Tc, Ts, Tt; Tb = Rm[0]; Tc = Rp[WS(rs, 3)]; Td = Tb + Tc; TQ = Tb - Tc; Ts = Ip[WS(rs, 3)]; Tt = Im[0]; Tu = Ts - Tt; TR = Ts + Tt; } Te = Ta + Td; TZ = TN + TO; T10 = TQ + TR; Tv = Tr + Tu; Tz = Tu - Tr; TP = TN - TO; TS = TQ - TR; TD = Ta - Td; } Rp[0] = T7 + Te; Rm[0] = To + Tv; { E Tg, Tw, Tf, Th; Tg = T7 - Te; Tw = To - Tv; Tf = W[6]; Th = W[7]; Rp[WS(rs, 2)] = FNMS(Th, Tw, Tf * Tg); Rm[WS(rs, 2)] = FMA(Th, Tg, Tf * Tw); } { E TG, TI, TF, TH; TG = Ty + Tz; TI = TD + TC; TF = W[2]; TH = W[3]; Rp[WS(rs, 1)] = FNMS(TH, TI, TF * TG); Rm[WS(rs, 1)] = FMA(TF, TI, TH * TG); } { E TA, TE, Tx, TB; TA = Ty - Tz; TE = TC - TD; Tx = W[10]; TB = W[11]; Rp[WS(rs, 3)] = FNMS(TB, TE, Tx * TA); Rm[WS(rs, 3)] = FMA(Tx, TE, TB * TA); } { E T1a, T1g, T1e, T1i, T19, T1d; T19 = KP707106781 * (TZ + T10); T1a = T18 - T19; T1g = T18 + T19; T1d = KP707106781 * (TP - TS); T1e = T1c + T1d; T1i = T1c - T1d; { E T17, T1b, T1f, T1h; T17 = W[4]; T1b = W[5]; Ip[WS(rs, 1)] = FNMS(T1b, T1e, T17 * T1a); Im[WS(rs, 1)] = FMA(T17, T1e, T1b * T1a); T1f = W[12]; T1h = W[13]; Ip[WS(rs, 3)] = FNMS(T1h, T1i, T1f * T1g); Im[WS(rs, 3)] = FMA(T1f, T1i, T1h * T1g); } } { E TU, T14, T12, T16, TT, T11; TT = KP707106781 * (TP + TS); TU = TM - TT; T14 = TM + TT; T11 = KP707106781 * (TZ - T10); T12 = TY - T11; T16 = TY + T11; { E TJ, TV, T13, T15; TJ = W[8]; TV = W[9]; Ip[WS(rs, 2)] = FNMS(TV, T12, TJ * TU); Im[WS(rs, 2)] = FMA(TV, TU, TJ * T12); T13 = W[0]; T15 = W[1]; Ip[0] = FNMS(T15, T16, T13 * T14); Im[0] = FMA(T15, T14, T13 * T16); } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 8}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {52, 18, 14, 0} }; void X(codelet_hc2cb_8) (planner *p) { X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT); } #endif