/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:08:00 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include rdft/scalar/hc2cb.h */ /* * This function contains 82 FP additions, 36 FP multiplications, * (or, 60 additions, 14 multiplications, 22 fused multiply/add), * 41 stack variables, 1 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { E Tl, T1p, T1g, TM, T1k, TE, TP, T1f, T7, Te, TU, TH, T1l, Tw, T1q; E T1c, T1y; { E T3, TA, Tk, TN, T6, Th, TD, TO, Ta, Tm, Tp, TK, Td, Tr, Tu; E TL, TF, TG; { E T1, T2, Ti, Tj; T1 = Rp[0]; T2 = Rm[WS(rs, 3)]; T3 = T1 + T2; TA = T1 - T2; Ti = Ip[0]; Tj = Im[WS(rs, 3)]; Tk = Ti + Tj; TN = Ti - Tj; } { E T4, T5, TB, TC; T4 = Rp[WS(rs, 2)]; T5 = Rm[WS(rs, 1)]; T6 = T4 + T5; Th = T4 - T5; TB = Ip[WS(rs, 2)]; TC = Im[WS(rs, 1)]; TD = TB + TC; TO = TB - TC; } { E T8, T9, Tn, To; T8 = Rp[WS(rs, 1)]; T9 = Rm[WS(rs, 2)]; Ta = T8 + T9; Tm = T8 - T9; Tn = Ip[WS(rs, 1)]; To = Im[WS(rs, 2)]; Tp = Tn + To; TK = Tn - To; } { E Tb, Tc, Ts, Tt; Tb = Rm[0]; Tc = Rp[WS(rs, 3)]; Td = Tb + Tc; Tr = Tb - Tc; Ts = Im[0]; Tt = Ip[WS(rs, 3)]; Tu = Ts + Tt; TL = Tt - Ts; } Tl = Th + Tk; T1p = TA + TD; T1g = TN - TO; TM = TK + TL; T1k = Tk - Th; TE = TA - TD; TP = TN + TO; T1f = Ta - Td; T7 = T3 + T6; Te = Ta + Td; TU = T7 - Te; TF = Tm - Tp; TG = Tr - Tu; TH = TF + TG; T1l = TF - TG; { E Tq, Tv, T1a, T1b; Tq = Tm + Tp; Tv = Tr + Tu; Tw = Tq - Tv; T1q = Tq + Tv; T1a = T3 - T6; T1b = TL - TK; T1c = T1a + T1b; T1y = T1a - T1b; } } { E Tf, TQ, Tx, TI, Ty, TR, Tg, TJ, TS, Tz; Tf = T7 + Te; TQ = TM + TP; Tx = FMA(KP707106781, Tw, Tl); TI = FMA(KP707106781, TH, TE); Tg = W[0]; Ty = Tg * Tx; TR = Tg * TI; Tz = W[1]; TJ = FMA(Tz, TI, Ty); TS = FNMS(Tz, Tx, TR); Rp[0] = Tf - TJ; Ip[0] = TQ + TS; Rm[0] = Tf + TJ; Im[0] = TS - TQ; } { E T1B, T1A, T1J, T1x, T1z, T1E, T1H, T1F, T1L, T1D; T1B = T1g - T1f; T1A = W[11]; T1J = T1A * T1y; T1x = W[10]; T1z = T1x * T1y; T1E = FNMS(KP707106781, T1l, T1k); T1H = FMA(KP707106781, T1q, T1p); T1D = W[12]; T1F = T1D * T1E; T1L = T1D * T1H; { E T1C, T1K, T1I, T1M, T1G; T1C = FNMS(T1A, T1B, T1z); T1K = FMA(T1x, T1B, T1J); T1G = W[13]; T1I = FMA(T1G, T1H, T1F); T1M = FNMS(T1G, T1E, T1L); Rp[WS(rs, 3)] = T1C - T1I; Ip[WS(rs, 3)] = T1K + T1M; Rm[WS(rs, 3)] = T1C + T1I; Im[WS(rs, 3)] = T1M - T1K; } } { E TX, TW, T15, TT, TV, T10, T13, T11, T17, TZ; TX = TP - TM; TW = W[7]; T15 = TW * TU; TT = W[6]; TV = TT * TU; T10 = FNMS(KP707106781, Tw, Tl); T13 = FNMS(KP707106781, TH, TE); TZ = W[8]; T11 = TZ * T10; T17 = TZ * T13; { E TY, T16, T14, T18, T12; TY = FNMS(TW, TX, TV); T16 = FMA(TT, TX, T15); T12 = W[9]; T14 = FMA(T12, T13, T11); T18 = FNMS(T12, T10, T17); Rp[WS(rs, 2)] = TY - T14; Ip[WS(rs, 2)] = T16 + T18; Rm[WS(rs, 2)] = TY + T14; Im[WS(rs, 2)] = T18 - T16; } } { E T1h, T1e, T1t, T19, T1d, T1m, T1r, T1n, T1v, T1j; T1h = T1f + T1g; T1e = W[3]; T1t = T1e * T1c; T19 = W[2]; T1d = T19 * T1c; T1m = FMA(KP707106781, T1l, T1k); T1r = FNMS(KP707106781, T1q, T1p); T1j = W[4]; T1n = T1j * T1m; T1v = T1j * T1r; { E T1i, T1u, T1s, T1w, T1o; T1i = FNMS(T1e, T1h, T1d); T1u = FMA(T19, T1h, T1t); T1o = W[5]; T1s = FMA(T1o, T1r, T1n); T1w = FNMS(T1o, T1m, T1v); Rp[WS(rs, 1)] = T1i - T1s; Ip[WS(rs, 1)] = T1u + T1w; Rm[WS(rs, 1)] = T1i + T1s; Im[WS(rs, 1)] = T1w - T1u; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 8}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, {60, 14, 22, 0} }; void X(codelet_hc2cbdft2_8) (planner *p) { X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft2_8 -include rdft/scalar/hc2cb.h */ /* * This function contains 82 FP additions, 32 FP multiplications, * (or, 68 additions, 18 multiplications, 14 fused multiply/add), * 30 stack variables, 1 constants, and 32 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) { E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw; E T1i; { E T3, TC, Tk, TM, T6, Th, TF, TN; { E T1, T2, Ti, Tj; T1 = Rp[0]; T2 = Rm[WS(rs, 3)]; T3 = T1 + T2; TC = T1 - T2; Ti = Ip[0]; Tj = Im[WS(rs, 3)]; Tk = Ti + Tj; TM = Ti - Tj; } { E T4, T5, TD, TE; T4 = Rp[WS(rs, 2)]; T5 = Rm[WS(rs, 1)]; T6 = T4 + T5; Th = T4 - T5; TD = Ip[WS(rs, 2)]; TE = Im[WS(rs, 1)]; TF = TD + TE; TN = TD - TE; } T7 = T3 + T6; T1d = Tk - Th; T1h = TC + TF; Tl = Th + Tk; TG = TC - TF; T14 = T3 - T6; T19 = TM - TN; TO = TM + TN; } { E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK; { E T8, T9, Tn, To; T8 = Rp[WS(rs, 1)]; T9 = Rm[WS(rs, 2)]; Ta = T8 + T9; Tm = T8 - T9; Tn = Ip[WS(rs, 1)]; To = Im[WS(rs, 2)]; Tp = Tn + To; TJ = Tn - To; } { E Tb, Tc, Ts, Tt; Tb = Rm[0]; Tc = Rp[WS(rs, 3)]; Td = Tb + Tc; Tr = Tb - Tc; Ts = Im[0]; Tt = Ip[WS(rs, 3)]; Tu = Ts + Tt; TK = Tt - Ts; } Te = Ta + Td; TL = TJ + TK; T18 = Ta - Td; T15 = TK - TJ; { E Tz, TA, Tq, Tv; Tz = Tm - Tp; TA = Tr - Tu; TB = KP707106781 * (Tz + TA); T1e = KP707106781 * (Tz - TA); Tq = Tm + Tp; Tv = Tr + Tu; Tw = KP707106781 * (Tq - Tv); T1i = KP707106781 * (Tq + Tv); } } { E Tf, TP, TI, TQ; Tf = T7 + Te; TP = TL + TO; { E Tx, TH, Tg, Ty; Tx = Tl + Tw; TH = TB + TG; Tg = W[0]; Ty = W[1]; TI = FMA(Tg, Tx, Ty * TH); TQ = FNMS(Ty, Tx, Tg * TH); } Rp[0] = Tf - TI; Ip[0] = TP + TQ; Rm[0] = Tf + TI; Im[0] = TQ - TP; } { E T1r, T1x, T1w, T1y; { E T1o, T1q, T1n, T1p; T1o = T14 - T15; T1q = T19 - T18; T1n = W[10]; T1p = W[11]; T1r = FNMS(T1p, T1q, T1n * T1o); T1x = FMA(T1p, T1o, T1n * T1q); } { E T1t, T1v, T1s, T1u; T1t = T1d - T1e; T1v = T1i + T1h; T1s = W[12]; T1u = W[13]; T1w = FMA(T1s, T1t, T1u * T1v); T1y = FNMS(T1u, T1t, T1s * T1v); } Rp[WS(rs, 3)] = T1r - T1w; Ip[WS(rs, 3)] = T1x + T1y; Rm[WS(rs, 3)] = T1r + T1w; Im[WS(rs, 3)] = T1y - T1x; } { E TV, T11, T10, T12; { E TS, TU, TR, TT; TS = T7 - Te; TU = TO - TL; TR = W[6]; TT = W[7]; TV = FNMS(TT, TU, TR * TS); T11 = FMA(TT, TS, TR * TU); } { E TX, TZ, TW, TY; TX = Tl - Tw; TZ = TG - TB; TW = W[8]; TY = W[9]; T10 = FMA(TW, TX, TY * TZ); T12 = FNMS(TY, TX, TW * TZ); } Rp[WS(rs, 2)] = TV - T10; Ip[WS(rs, 2)] = T11 + T12; Rm[WS(rs, 2)] = TV + T10; Im[WS(rs, 2)] = T12 - T11; } { E T1b, T1l, T1k, T1m; { E T16, T1a, T13, T17; T16 = T14 + T15; T1a = T18 + T19; T13 = W[2]; T17 = W[3]; T1b = FNMS(T17, T1a, T13 * T16); T1l = FMA(T17, T16, T13 * T1a); } { E T1f, T1j, T1c, T1g; T1f = T1d + T1e; T1j = T1h - T1i; T1c = W[4]; T1g = W[5]; T1k = FMA(T1c, T1f, T1g * T1j); T1m = FNMS(T1g, T1f, T1c * T1j); } Rp[WS(rs, 1)] = T1b - T1k; Ip[WS(rs, 1)] = T1l + T1m; Rm[WS(rs, 1)] = T1b + T1k; Im[WS(rs, 1)] = T1m - T1l; } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 8}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 8, "hc2cbdft2_8", twinstr, &GENUS, {68, 18, 14, 0} }; void X(codelet_hc2cbdft2_8) (planner *p) { X(khc2c_register) (p, hc2cbdft2_8, &desc, HC2C_VIA_DFT); } #endif