/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:58 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */ /* * This function contains 122 FP additions, 72 FP multiplications, * (or, 68 additions, 18 multiplications, 54 fused multiply/add), * 91 stack variables, 4 constants, and 40 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP250000000, +0.250000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { E T3, Tl, Tu, T14, Ti, T13, Ts, Tt, T1p, T23, TZ, T1z, TQ, T1g, TV; E T1l, TT, TU, T1j, T1k, T1c, T1Y, TK, T1u; { E Td, Tp, Tg, Tq, Th, Tr, T6, Tm, T9, Tn, Ta, To, T1, T2; T1 = Rp[0]; T2 = Rm[WS(rs, 4)]; T3 = T1 + T2; Tl = T1 - T2; { E Tb, Tc, Te, Tf; Tb = Rp[WS(rs, 4)]; Tc = Rm[0]; Td = Tb + Tc; Tp = Tb - Tc; Te = Rm[WS(rs, 3)]; Tf = Rp[WS(rs, 1)]; Tg = Te + Tf; Tq = Te - Tf; } Th = Td + Tg; Tr = Tp + Tq; { E T4, T5, T7, T8; T4 = Rp[WS(rs, 2)]; T5 = Rm[WS(rs, 2)]; T6 = T4 + T5; Tm = T4 - T5; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 3)]; T9 = T7 + T8; Tn = T7 - T8; } Ta = T6 + T9; To = Tm + Tn; Tu = To - Tr; T14 = Ta - Th; Ti = Ta + Th; T13 = FNMS(KP250000000, Ti, T3); Ts = To + Tr; Tt = FNMS(KP250000000, Ts, Tl); { E T1n, T1o, TX, TY; T1n = Td - Tg; T1o = T6 - T9; T1p = FNMS(KP618033988, T1o, T1n); T23 = FMA(KP618033988, T1n, T1o); TX = Tm - Tn; TY = Tp - Tq; TZ = FMA(KP618033988, TY, TX); T1z = FNMS(KP618033988, TX, TY); } } { E TF, T16, TI, T17, TS, T1i, Ty, T19, TB, T1a, TR, T1h, TO, TP; TO = Ip[0]; TP = Im[WS(rs, 4)]; TQ = TO + TP; T1g = TO - TP; { E TD, TE, TG, TH; TD = Ip[WS(rs, 4)]; TE = Im[0]; TF = TD + TE; T16 = TD - TE; TG = Im[WS(rs, 3)]; TH = Ip[WS(rs, 1)]; TI = TG + TH; T17 = TH - TG; } TS = TF - TI; T1i = T16 + T17; { E Tw, Tx, Tz, TA; Tw = Ip[WS(rs, 2)]; Tx = Im[WS(rs, 2)]; Ty = Tw + Tx; T19 = Tw - Tx; Tz = Im[WS(rs, 1)]; TA = Ip[WS(rs, 3)]; TB = Tz + TA; T1a = TA - Tz; } TR = Ty - TB; T1h = T19 + T1a; TV = TR - TS; T1l = T1h - T1i; TT = TR + TS; TU = FNMS(KP250000000, TT, TQ); T1j = T1h + T1i; T1k = FNMS(KP250000000, T1j, T1g); { E T18, T1b, TC, TJ; T18 = T16 - T17; T1b = T19 - T1a; T1c = FNMS(KP618033988, T1b, T18); T1Y = FMA(KP618033988, T18, T1b); TC = Ty + TB; TJ = TF + TI; TK = FMA(KP618033988, TJ, TC); T1u = FNMS(KP618033988, TC, TJ); } } { E Tj, T2y, T2a, T1A, T2q, T10, T1Q, T24, T2k, T1q, T1K, T26, T28, T29, T2c; E Tk, TM, TN, T2w, T1M, T1O, T1P, T1S, T1s, T1w, T1x, T1C, T2m, T2o, T2p; E T2s, T12, T1e, T1f, T1E, T1G, T1I, T1J, T1U, T1W, T20, T21, T2e, T2g, T2i; E T2j, T2u, T1y, TW, T22, T2l, T2r; Tj = T3 + Ti; T2y = T1g + T1j; T2a = TQ + TT; T1y = FNMS(KP559016994, TV, TU); T1A = FMA(KP951056516, T1z, T1y); T2q = FNMS(KP951056516, T1z, T1y); TW = FMA(KP559016994, TV, TU); T10 = FMA(KP951056516, TZ, TW); T1Q = FNMS(KP951056516, TZ, TW); T22 = FMA(KP559016994, T1l, T1k); T24 = FNMS(KP951056516, T23, T22); T2k = FMA(KP951056516, T23, T22); { E T1m, T1v, T2n, T1t; T1m = FNMS(KP559016994, T1l, T1k); T1q = FNMS(KP951056516, T1p, T1m); T1K = FMA(KP951056516, T1p, T1m); { E T27, TL, T1N, Tv; T27 = Tl + Ts; T26 = W[9]; T28 = T26 * T27; T29 = W[8]; T2c = T29 * T27; Tv = FMA(KP559016994, Tu, Tt); TL = FNMS(KP951056516, TK, Tv); T1N = FMA(KP951056516, TK, Tv); Tk = W[1]; TM = Tk * TL; TN = W[0]; T2w = TN * TL; T1M = W[17]; T1O = T1M * T1N; T1P = W[16]; T1S = T1P * T1N; } T1t = FNMS(KP559016994, Tu, Tt); T1v = FNMS(KP951056516, T1u, T1t); T2n = FMA(KP951056516, T1u, T1t); T1s = W[5]; T1w = T1s * T1v; T1x = W[4]; T1C = T1x * T1v; T2m = W[13]; T2o = T2m * T2n; T2p = W[12]; T2s = T2p * T2n; { E T1d, T1H, T15, T1Z, T2h, T1X; T15 = FNMS(KP559016994, T14, T13); T1d = FMA(KP951056516, T1c, T15); T1H = FNMS(KP951056516, T1c, T15); T12 = W[2]; T1e = T12 * T1d; T1f = W[3]; T1E = T1f * T1d; T1G = W[14]; T1I = T1G * T1H; T1J = W[15]; T1U = T1J * T1H; T1X = FMA(KP559016994, T14, T13); T1Z = FMA(KP951056516, T1Y, T1X); T2h = FNMS(KP951056516, T1Y, T1X); T1W = W[6]; T20 = T1W * T1Z; T21 = W[7]; T2e = T21 * T1Z; T2g = W[10]; T2i = T2g * T2h; T2j = W[11]; T2u = T2j * T2h; } } { E T11, T2x, T1r, T1B; T11 = FMA(TN, T10, TM); Rp[0] = Tj - T11; Rm[0] = Tj + T11; T2x = FNMS(Tk, T10, T2w); Im[0] = T2x - T2y; Ip[0] = T2x + T2y; T1r = FNMS(T1f, T1q, T1e); T1B = FMA(T1x, T1A, T1w); Rp[WS(rs, 1)] = T1r - T1B; Rm[WS(rs, 1)] = T1B + T1r; { E T1D, T1F, T1L, T1R; T1D = FNMS(T1s, T1A, T1C); T1F = FMA(T12, T1q, T1E); Im[WS(rs, 1)] = T1D - T1F; Ip[WS(rs, 1)] = T1D + T1F; T1L = FNMS(T1J, T1K, T1I); T1R = FMA(T1P, T1Q, T1O); Rp[WS(rs, 4)] = T1L - T1R; Rm[WS(rs, 4)] = T1R + T1L; } } { E T1T, T1V, T2t, T2v; T1T = FNMS(T1M, T1Q, T1S); T1V = FMA(T1G, T1K, T1U); Im[WS(rs, 4)] = T1T - T1V; Ip[WS(rs, 4)] = T1T + T1V; T2t = FNMS(T2m, T2q, T2s); T2v = FMA(T2g, T2k, T2u); Im[WS(rs, 3)] = T2t - T2v; Ip[WS(rs, 3)] = T2t + T2v; } T2l = FNMS(T2j, T2k, T2i); T2r = FMA(T2p, T2q, T2o); Rp[WS(rs, 3)] = T2l - T2r; Rm[WS(rs, 3)] = T2r + T2l; { E T25, T2b, T2d, T2f; T25 = FNMS(T21, T24, T20); T2b = FMA(T29, T2a, T28); Rp[WS(rs, 2)] = T25 - T2b; Rm[WS(rs, 2)] = T2b + T25; T2d = FNMS(T26, T2a, T2c); T2f = FMA(T1W, T24, T2e); Im[WS(rs, 2)] = T2d - T2f; Ip[WS(rs, 2)] = T2d + T2f; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 10}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {68, 18, 54, 0} }; void X(codelet_hc2cbdft_10) (planner *p) { X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */ /* * This function contains 122 FP additions, 60 FP multiplications, * (or, 92 additions, 30 multiplications, 30 fused multiply/add), * 61 stack variables, 4 constants, and 40 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { E T3, TS, TR, T13, Ti, T12, TT, TU, T1g, T1T, Tr, T1s, TJ, T1h, TG; E T1m, TK, TL, T1k, T1l, T1b, T1P, TY, T1w; { E Td, To, Tg, Tp, Th, TQ, T6, Tl, T9, Tm, Ta, TP, T1, T2; T1 = Rp[0]; T2 = Rm[WS(rs, 4)]; T3 = T1 + T2; TS = T1 - T2; { E Tb, Tc, Te, Tf; Tb = Rp[WS(rs, 4)]; Tc = Rm[0]; Td = Tb + Tc; To = Tb - Tc; Te = Rm[WS(rs, 3)]; Tf = Rp[WS(rs, 1)]; Tg = Te + Tf; Tp = Te - Tf; } Th = Td + Tg; TQ = To + Tp; { E T4, T5, T7, T8; T4 = Rp[WS(rs, 2)]; T5 = Rm[WS(rs, 2)]; T6 = T4 + T5; Tl = T4 - T5; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 3)]; T9 = T7 + T8; Tm = T7 - T8; } Ta = T6 + T9; TP = Tl + Tm; TR = KP559016994 * (TP - TQ); T13 = KP559016994 * (Ta - Th); Ti = Ta + Th; T12 = FNMS(KP250000000, Ti, T3); TT = TP + TQ; TU = FNMS(KP250000000, TT, TS); { E T1e, T1f, Tn, Tq; T1e = T6 - T9; T1f = Td - Tg; T1g = FNMS(KP951056516, T1f, KP587785252 * T1e); T1T = FMA(KP951056516, T1e, KP587785252 * T1f); Tn = Tl - Tm; Tq = To - Tp; Tr = FMA(KP951056516, Tn, KP587785252 * Tq); T1s = FNMS(KP951056516, Tq, KP587785252 * Tn); } } { E TB, T18, TE, T19, TF, T1j, Tu, T15, Tx, T16, Ty, T1i, TH, TI; TH = Ip[0]; TI = Im[WS(rs, 4)]; TJ = TH + TI; T1h = TH - TI; { E Tz, TA, TC, TD; Tz = Ip[WS(rs, 4)]; TA = Im[0]; TB = Tz + TA; T18 = Tz - TA; TC = Im[WS(rs, 3)]; TD = Ip[WS(rs, 1)]; TE = TC + TD; T19 = TD - TC; } TF = TB - TE; T1j = T18 + T19; { E Ts, Tt, Tv, Tw; Ts = Ip[WS(rs, 2)]; Tt = Im[WS(rs, 2)]; Tu = Ts + Tt; T15 = Ts - Tt; Tv = Im[WS(rs, 1)]; Tw = Ip[WS(rs, 3)]; Tx = Tv + Tw; T16 = Tw - Tv; } Ty = Tu - Tx; T1i = T15 + T16; TG = KP559016994 * (Ty - TF); T1m = KP559016994 * (T1i - T1j); TK = Ty + TF; TL = FNMS(KP250000000, TK, TJ); T1k = T1i + T1j; T1l = FNMS(KP250000000, T1k, T1h); { E T17, T1a, TW, TX; T17 = T15 - T16; T1a = T18 - T19; T1b = FNMS(KP951056516, T1a, KP587785252 * T17); T1P = FMA(KP951056516, T17, KP587785252 * T1a); TW = Tu + Tx; TX = TB + TE; TY = FMA(KP951056516, TW, KP587785252 * TX); T1w = FNMS(KP951056516, TX, KP587785252 * TW); } } { E Tj, T2g, TN, T1H, T1U, T26, TZ, T1J, T1Q, T24, T1c, T1C, T1t, T29, T1o; E T1E, T1x, T2b, T20, T21, TM, T1S, TV; Tj = T3 + Ti; T2g = T1h + T1k; TM = TG + TL; TN = Tr + TM; T1H = TM - Tr; T1S = T1m + T1l; T1U = T1S - T1T; T26 = T1T + T1S; TV = TR + TU; TZ = TV - TY; T1J = TV + TY; { E T1O, T14, T1r, T1n, T1v; T1O = T13 + T12; T1Q = T1O + T1P; T24 = T1O - T1P; T14 = T12 - T13; T1c = T14 - T1b; T1C = T14 + T1b; T1r = TL - TG; T1t = T1r - T1s; T29 = T1s + T1r; T1n = T1l - T1m; T1o = T1g + T1n; T1E = T1n - T1g; T1v = TU - TR; T1x = T1v + T1w; T2b = T1v - T1w; { E T1X, T1Z, T1W, T1Y; T1X = TS + TT; T1Z = TJ + TK; T1W = W[9]; T1Y = W[8]; T20 = FMA(T1W, T1X, T1Y * T1Z); T21 = FNMS(T1W, T1Z, T1Y * T1X); } } { E T10, T2f, Tk, TO; Tk = W[0]; TO = W[1]; T10 = FMA(Tk, TN, TO * TZ); T2f = FNMS(TO, TN, Tk * TZ); Rp[0] = Tj - T10; Ip[0] = T2f + T2g; Rm[0] = Tj + T10; Im[0] = T2f - T2g; } { E T1V, T22, T1N, T1R; T1N = W[6]; T1R = W[7]; T1V = FNMS(T1R, T1U, T1N * T1Q); T22 = FMA(T1R, T1Q, T1N * T1U); Rp[WS(rs, 2)] = T1V - T20; Ip[WS(rs, 2)] = T21 + T22; Rm[WS(rs, 2)] = T20 + T1V; Im[WS(rs, 2)] = T21 - T22; } { E T1p, T1A, T1y, T1z; { E T11, T1d, T1q, T1u; T11 = W[2]; T1d = W[3]; T1p = FNMS(T1d, T1o, T11 * T1c); T1A = FMA(T1d, T1c, T11 * T1o); T1q = W[4]; T1u = W[5]; T1y = FMA(T1q, T1t, T1u * T1x); T1z = FNMS(T1u, T1t, T1q * T1x); } Rp[WS(rs, 1)] = T1p - T1y; Ip[WS(rs, 1)] = T1z + T1A; Rm[WS(rs, 1)] = T1y + T1p; Im[WS(rs, 1)] = T1z - T1A; } { E T1F, T1M, T1K, T1L; { E T1B, T1D, T1G, T1I; T1B = W[14]; T1D = W[15]; T1F = FNMS(T1D, T1E, T1B * T1C); T1M = FMA(T1D, T1C, T1B * T1E); T1G = W[16]; T1I = W[17]; T1K = FMA(T1G, T1H, T1I * T1J); T1L = FNMS(T1I, T1H, T1G * T1J); } Rp[WS(rs, 4)] = T1F - T1K; Ip[WS(rs, 4)] = T1L + T1M; Rm[WS(rs, 4)] = T1K + T1F; Im[WS(rs, 4)] = T1L - T1M; } { E T27, T2e, T2c, T2d; { E T23, T25, T28, T2a; T23 = W[10]; T25 = W[11]; T27 = FNMS(T25, T26, T23 * T24); T2e = FMA(T25, T24, T23 * T26); T28 = W[12]; T2a = W[13]; T2c = FMA(T28, T29, T2a * T2b); T2d = FNMS(T2a, T29, T28 * T2b); } Rp[WS(rs, 3)] = T27 - T2c; Ip[WS(rs, 3)] = T2d + T2e; Rm[WS(rs, 3)] = T2c + T27; Im[WS(rs, 3)] = T2d - T2e; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 10}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {92, 30, 30, 0} }; void X(codelet_hc2cbdft_10) (planner *p) { X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT); } #endif