/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:58 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */ /* * This function contains 142 FP additions, 68 FP multiplications, * (or, 96 additions, 22 multiplications, 46 fused multiply/add), * 55 stack variables, 2 constants, and 48 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { E Tv, TC, TD, T1L, T1M, T2y, Tb, T1Z, T1E, T2D, T1e, T1U, TY, T2o, T13; E T18, T19, T1O, T1P, T2E, Tm, T1V, T1H, T2z, T1h, T20, TO, T2p; { E T1, T4, Tu, TS, Tp, Ts, Tt, TT, T6, T9, TB, TV, Tw, Tz, TA; E TW; { E T2, T3, Tq, Tr; T1 = Rp[0]; T2 = Rp[WS(rs, 4)]; T3 = Rm[WS(rs, 3)]; T4 = T2 + T3; Tu = T2 - T3; TS = FNMS(KP500000000, T4, T1); Tp = Ip[0]; Tq = Ip[WS(rs, 4)]; Tr = Im[WS(rs, 3)]; Ts = Tq - Tr; Tt = FNMS(KP500000000, Ts, Tp); TT = Tr + Tq; } { E T7, T8, Tx, Ty; T6 = Rm[WS(rs, 5)]; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 2)]; T9 = T7 + T8; TB = T7 - T8; TV = FNMS(KP500000000, T9, T6); Tw = Im[WS(rs, 5)]; Tx = Im[WS(rs, 1)]; Ty = Ip[WS(rs, 2)]; Tz = Tx - Ty; TA = FNMS(KP500000000, Tz, Tw); TW = Tx + Ty; } { E T5, Ta, T1C, T1D; Tv = FMA(KP866025403, Tu, Tt); TC = FNMS(KP866025403, TB, TA); TD = Tv + TC; T1L = FNMS(KP866025403, Tu, Tt); T1M = FMA(KP866025403, TB, TA); T2y = T1L + T1M; T5 = T1 + T4; Ta = T6 + T9; Tb = T5 + Ta; T1Z = T5 - Ta; T1C = FMA(KP866025403, TT, TS); T1D = FNMS(KP866025403, TW, TV); T1E = T1C + T1D; T2D = T1C - T1D; { E T1c, T1d, TU, TX; T1c = Tp + Ts; T1d = Tw + Tz; T1e = T1c - T1d; T1U = T1c + T1d; TU = FNMS(KP866025403, TT, TS); TX = FMA(KP866025403, TW, TV); TY = TU - TX; T2o = TU + TX; } } } { E Tc, Tf, TE, T12, TZ, T10, TH, T11, Th, Tk, TJ, T17, T14, T15, TM; E T16; { E Td, Te, TF, TG; Tc = Rp[WS(rs, 3)]; Td = Rm[WS(rs, 4)]; Te = Rm[0]; Tf = Td + Te; TE = FNMS(KP500000000, Tf, Tc); T12 = Td - Te; TZ = Ip[WS(rs, 3)]; TF = Im[WS(rs, 4)]; TG = Im[0]; T10 = TF + TG; TH = TF - TG; T11 = FMA(KP500000000, T10, TZ); } { E Ti, Tj, TK, TL; Th = Rm[WS(rs, 2)]; Ti = Rp[WS(rs, 1)]; Tj = Rp[WS(rs, 5)]; Tk = Ti + Tj; TJ = FNMS(KP500000000, Tk, Th); T17 = Ti - Tj; T14 = Im[WS(rs, 2)]; TK = Ip[WS(rs, 5)]; TL = Ip[WS(rs, 1)]; T15 = TK + TL; TM = TK - TL; T16 = FMA(KP500000000, T15, T14); } { E Tg, Tl, T1F, T1G; T13 = FMA(KP866025403, T12, T11); T18 = FNMS(KP866025403, T17, T16); T19 = T13 + T18; T1O = FNMS(KP866025403, T12, T11); T1P = FMA(KP866025403, T17, T16); T2E = T1O + T1P; Tg = Tc + Tf; Tl = Th + Tk; Tm = Tg + Tl; T1V = Tg - Tl; T1F = FNMS(KP866025403, TH, TE); T1G = FNMS(KP866025403, TM, TJ); T1H = T1F + T1G; T2z = T1F - T1G; { E T1f, T1g, TI, TN; T1f = TZ - T10; T1g = T15 - T14; T1h = T1f + T1g; T20 = T1f - T1g; TI = FMA(KP866025403, TH, TE); TN = FMA(KP866025403, TM, TJ); TO = TI - TN; T2p = TI + TN; } } } { E Tn, T1i, TP, T1a, TQ, T1j, To, T1b, T1k, TR; Tn = Tb + Tm; T1i = T1e + T1h; TP = TD + TO; T1a = TY - T19; To = W[0]; TQ = To * TP; T1j = To * T1a; TR = W[1]; T1b = FMA(TR, T1a, TQ); T1k = FNMS(TR, TP, T1j); Rp[0] = Tn - T1b; Ip[0] = T1i + T1k; Rm[0] = Tn + T1b; Im[0] = T1k - T1i; } { E T1p, T1l, T1n, T1o, T1x, T1s, T1v, T1t, T1z, T1m, T1r; T1p = T1e - T1h; T1m = Tb - Tm; T1l = W[10]; T1n = T1l * T1m; T1o = W[11]; T1x = T1o * T1m; T1s = TD - TO; T1v = TY + T19; T1r = W[12]; T1t = T1r * T1s; T1z = T1r * T1v; { E T1q, T1y, T1w, T1A, T1u; T1q = FNMS(T1o, T1p, T1n); T1y = FMA(T1l, T1p, T1x); T1u = W[13]; T1w = FMA(T1u, T1v, T1t); T1A = FNMS(T1u, T1s, T1z); Rp[WS(rs, 3)] = T1q - T1w; Ip[WS(rs, 3)] = T1y + T1A; Rm[WS(rs, 3)] = T1q + T1w; Im[WS(rs, 3)] = T1A - T1y; } } { E T1R, T2b, T27, T29, T2a, T2l, T1B, T1J, T1K, T25, T1W, T21, T1X, T23, T2e; E T2h, T2f, T2j; { E T1N, T1Q, T28, T1I, T1T, T2d; T1N = T1L - T1M; T1Q = T1O - T1P; T1R = T1N - T1Q; T2b = T1N + T1Q; T28 = T1E + T1H; T27 = W[14]; T29 = T27 * T28; T2a = W[15]; T2l = T2a * T28; T1I = T1E - T1H; T1B = W[2]; T1J = T1B * T1I; T1K = W[3]; T25 = T1K * T1I; T1W = T1U - T1V; T21 = T1Z + T20; T1T = W[4]; T1X = T1T * T1W; T23 = T1T * T21; T2e = T1V + T1U; T2h = T1Z - T20; T2d = W[16]; T2f = T2d * T2e; T2j = T2d * T2h; } { E T1S, T26, T22, T24, T1Y; T1S = FNMS(T1K, T1R, T1J); T26 = FMA(T1B, T1R, T25); T1Y = W[5]; T22 = FMA(T1Y, T21, T1X); T24 = FNMS(T1Y, T1W, T23); Rp[WS(rs, 1)] = T1S - T22; Ip[WS(rs, 1)] = T24 + T26; Rm[WS(rs, 1)] = T22 + T1S; Im[WS(rs, 1)] = T24 - T26; } { E T2c, T2m, T2i, T2k, T2g; T2c = FNMS(T2a, T2b, T29); T2m = FMA(T27, T2b, T2l); T2g = W[17]; T2i = FMA(T2g, T2h, T2f); T2k = FNMS(T2g, T2e, T2j); Rp[WS(rs, 4)] = T2c - T2i; Ip[WS(rs, 4)] = T2k + T2m; Rm[WS(rs, 4)] = T2i + T2c; Im[WS(rs, 4)] = T2k - T2m; } } { E T2v, T2P, T2L, T2N, T2O, T2X, T2n, T2r, T2s, T2H, T2A, T2F, T2B, T2J, T2S; E T2V, T2T, T2Z; { E T2t, T2u, T2M, T2q, T2x, T2R; T2t = Tv - TC; T2u = T13 - T18; T2v = T2t + T2u; T2P = T2t - T2u; T2M = T2o - T2p; T2L = W[18]; T2N = T2L * T2M; T2O = W[19]; T2X = T2O * T2M; T2q = T2o + T2p; T2n = W[6]; T2r = T2n * T2q; T2s = W[7]; T2H = T2s * T2q; T2A = T2y + T2z; T2F = T2D - T2E; T2x = W[8]; T2B = T2x * T2A; T2J = T2x * T2F; T2S = T2y - T2z; T2V = T2D + T2E; T2R = W[20]; T2T = T2R * T2S; T2Z = T2R * T2V; } { E T2w, T2I, T2G, T2K, T2C; T2w = FNMS(T2s, T2v, T2r); T2I = FMA(T2n, T2v, T2H); T2C = W[9]; T2G = FMA(T2C, T2F, T2B); T2K = FNMS(T2C, T2A, T2J); Rp[WS(rs, 2)] = T2w - T2G; Ip[WS(rs, 2)] = T2I + T2K; Rm[WS(rs, 2)] = T2w + T2G; Im[WS(rs, 2)] = T2K - T2I; } { E T2Q, T2Y, T2W, T30, T2U; T2Q = FNMS(T2O, T2P, T2N); T2Y = FMA(T2L, T2P, T2X); T2U = W[21]; T2W = FMA(T2U, T2V, T2T); T30 = FNMS(T2U, T2S, T2Z); Rp[WS(rs, 5)] = T2Q - T2W; Ip[WS(rs, 5)] = T2Y + T30; Rm[WS(rs, 5)] = T2Q + T2W; Im[WS(rs, 5)] = T30 - T2Y; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 12}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {96, 22, 46, 0} }; void X(codelet_hc2cbdft_12) (planner *p) { X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include rdft/scalar/hc2cb.h */ /* * This function contains 142 FP additions, 60 FP multiplications, * (or, 112 additions, 30 multiplications, 30 fused multiply/add), * 47 stack variables, 2 constants, and 48 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); { INT m; for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { E Tv, T1E, TC, T1F, TW, T1x, TT, T1w, T1d, T1N, Tb, T1R, TI, T1z, TN; E T1A, T17, T1I, T12, T1H, T1g, T1S, Tm, T1O; { E T1, Tq, T6, TA, T4, Tp, Tt, TS, T9, Tw, Tz, TV; T1 = Rp[0]; Tq = Ip[0]; T6 = Rm[WS(rs, 5)]; TA = Im[WS(rs, 5)]; { E T2, T3, Tr, Ts; T2 = Rp[WS(rs, 4)]; T3 = Rm[WS(rs, 3)]; T4 = T2 + T3; Tp = KP866025403 * (T2 - T3); Tr = Im[WS(rs, 3)]; Ts = Ip[WS(rs, 4)]; Tt = Tr - Ts; TS = KP866025403 * (Tr + Ts); } { E T7, T8, Tx, Ty; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 2)]; T9 = T7 + T8; Tw = KP866025403 * (T7 - T8); Tx = Im[WS(rs, 1)]; Ty = Ip[WS(rs, 2)]; Tz = Tx - Ty; TV = KP866025403 * (Tx + Ty); } { E Tu, TB, TU, TR; Tu = FMA(KP500000000, Tt, Tq); Tv = Tp + Tu; T1E = Tu - Tp; TB = FMS(KP500000000, Tz, TA); TC = Tw + TB; T1F = TB - Tw; TU = FNMS(KP500000000, T9, T6); TW = TU + TV; T1x = TU - TV; TR = FNMS(KP500000000, T4, T1); TT = TR - TS; T1w = TR + TS; { E T1b, T1c, T5, Ta; T1b = Tq - Tt; T1c = Tz + TA; T1d = T1b - T1c; T1N = T1b + T1c; T5 = T1 + T4; Ta = T6 + T9; Tb = T5 + Ta; T1R = T5 - Ta; } } } { E Tc, T10, Th, T15, Tf, TY, TH, TZ, Tk, T13, TM, T14; Tc = Rp[WS(rs, 3)]; T10 = Ip[WS(rs, 3)]; Th = Rm[WS(rs, 2)]; T15 = Im[WS(rs, 2)]; { E Td, Te, TF, TG; Td = Rm[WS(rs, 4)]; Te = Rm[0]; Tf = Td + Te; TY = KP866025403 * (Td - Te); TF = Im[WS(rs, 4)]; TG = Im[0]; TH = KP866025403 * (TF - TG); TZ = TF + TG; } { E Ti, Tj, TK, TL; Ti = Rp[WS(rs, 1)]; Tj = Rp[WS(rs, 5)]; Tk = Ti + Tj; T13 = KP866025403 * (Ti - Tj); TK = Ip[WS(rs, 5)]; TL = Ip[WS(rs, 1)]; TM = KP866025403 * (TK - TL); T14 = TK + TL; } { E TE, TJ, T16, T11; TE = FNMS(KP500000000, Tf, Tc); TI = TE + TH; T1z = TE - TH; TJ = FNMS(KP500000000, Tk, Th); TN = TJ + TM; T1A = TJ - TM; T16 = FMA(KP500000000, T14, T15); T17 = T13 - T16; T1I = T13 + T16; T11 = FMA(KP500000000, TZ, T10); T12 = TY + T11; T1H = T11 - TY; { E T1e, T1f, Tg, Tl; T1e = T10 - TZ; T1f = T14 - T15; T1g = T1e + T1f; T1S = T1e - T1f; Tg = Tc + Tf; Tl = Th + Tk; Tm = Tg + Tl; T1O = Tg - Tl; } } } { E Tn, T1h, TP, T1p, T19, T1r, T1n, T1t; Tn = Tb + Tm; T1h = T1d + T1g; { E TD, TO, TX, T18; TD = Tv - TC; TO = TI - TN; TP = TD + TO; T1p = TD - TO; TX = TT - TW; T18 = T12 - T17; T19 = TX - T18; T1r = TX + T18; { E T1k, T1m, T1j, T1l; T1k = Tb - Tm; T1m = T1d - T1g; T1j = W[10]; T1l = W[11]; T1n = FNMS(T1l, T1m, T1j * T1k); T1t = FMA(T1l, T1k, T1j * T1m); } } { E T1a, T1i, To, TQ; To = W[0]; TQ = W[1]; T1a = FMA(To, TP, TQ * T19); T1i = FNMS(TQ, TP, To * T19); Rp[0] = Tn - T1a; Ip[0] = T1h + T1i; Rm[0] = Tn + T1a; Im[0] = T1i - T1h; } { E T1s, T1u, T1o, T1q; T1o = W[12]; T1q = W[13]; T1s = FMA(T1o, T1p, T1q * T1r); T1u = FNMS(T1q, T1p, T1o * T1r); Rp[WS(rs, 3)] = T1n - T1s; Ip[WS(rs, 3)] = T1t + T1u; Rm[WS(rs, 3)] = T1n + T1s; Im[WS(rs, 3)] = T1u - T1t; } } { E T1C, T1Y, T1K, T20, T1U, T1V, T26, T27; { E T1y, T1B, T1G, T1J; T1y = T1w + T1x; T1B = T1z + T1A; T1C = T1y - T1B; T1Y = T1y + T1B; T1G = T1E + T1F; T1J = T1H - T1I; T1K = T1G - T1J; T20 = T1G + T1J; } { E T1P, T1T, T1M, T1Q; T1P = T1N - T1O; T1T = T1R + T1S; T1M = W[4]; T1Q = W[5]; T1U = FMA(T1M, T1P, T1Q * T1T); T1V = FNMS(T1Q, T1P, T1M * T1T); } { E T23, T25, T22, T24; T23 = T1O + T1N; T25 = T1R - T1S; T22 = W[16]; T24 = W[17]; T26 = FMA(T22, T23, T24 * T25); T27 = FNMS(T24, T23, T22 * T25); } { E T1L, T1W, T1v, T1D; T1v = W[2]; T1D = W[3]; T1L = FNMS(T1D, T1K, T1v * T1C); T1W = FMA(T1D, T1C, T1v * T1K); Rp[WS(rs, 1)] = T1L - T1U; Ip[WS(rs, 1)] = T1V + T1W; Rm[WS(rs, 1)] = T1U + T1L; Im[WS(rs, 1)] = T1V - T1W; } { E T21, T28, T1X, T1Z; T1X = W[14]; T1Z = W[15]; T21 = FNMS(T1Z, T20, T1X * T1Y); T28 = FMA(T1Z, T1Y, T1X * T20); Rp[WS(rs, 4)] = T21 - T26; Ip[WS(rs, 4)] = T27 + T28; Rm[WS(rs, 4)] = T26 + T21; Im[WS(rs, 4)] = T27 - T28; } } { E T2c, T2u, T2p, T2B, T2g, T2w, T2l, T2z; { E T2a, T2b, T2n, T2o; T2a = TT + TW; T2b = TI + TN; T2c = T2a + T2b; T2u = T2a - T2b; T2n = T1w - T1x; T2o = T1H + T1I; T2p = T2n - T2o; T2B = T2n + T2o; } { E T2e, T2f, T2j, T2k; T2e = Tv + TC; T2f = T12 + T17; T2g = T2e + T2f; T2w = T2e - T2f; T2j = T1E - T1F; T2k = T1z - T1A; T2l = T2j + T2k; T2z = T2j - T2k; } { E T2h, T2r, T2q, T2s; { E T29, T2d, T2i, T2m; T29 = W[6]; T2d = W[7]; T2h = FNMS(T2d, T2g, T29 * T2c); T2r = FMA(T2d, T2c, T29 * T2g); T2i = W[8]; T2m = W[9]; T2q = FMA(T2i, T2l, T2m * T2p); T2s = FNMS(T2m, T2l, T2i * T2p); } Rp[WS(rs, 2)] = T2h - T2q; Ip[WS(rs, 2)] = T2r + T2s; Rm[WS(rs, 2)] = T2h + T2q; Im[WS(rs, 2)] = T2s - T2r; } { E T2x, T2D, T2C, T2E; { E T2t, T2v, T2y, T2A; T2t = W[18]; T2v = W[19]; T2x = FNMS(T2v, T2w, T2t * T2u); T2D = FMA(T2v, T2u, T2t * T2w); T2y = W[20]; T2A = W[21]; T2C = FMA(T2y, T2z, T2A * T2B); T2E = FNMS(T2A, T2z, T2y * T2B); } Rp[WS(rs, 5)] = T2x - T2C; Ip[WS(rs, 5)] = T2D + T2E; Rm[WS(rs, 5)] = T2x + T2C; Im[WS(rs, 5)] = T2E - T2D; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 12}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {112, 30, 30, 0} }; void X(codelet_hc2cbdft_12) (planner *p) { X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); } #endif