/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:58 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */ /* * This function contains 206 FP additions, 100 FP multiplications, * (or, 136 additions, 30 multiplications, 70 fused multiply/add), * 66 stack variables, 3 constants, and 64 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { E Tf, T20, T32, T3Q, T3f, T3V, TN, T2a, T1m, T2f, T2G, T3G, T2T, T3L, T1F; E T26, T2J, T2M, T2N, T2U, T2V, T3H, Tu, T25, T3i, T3R, T1a, T2g, T1y, T21; E T39, T3W, T1p, T2b; { E T3, T1e, TA, T1C, T6, Tx, T1h, T1D, Td, T1A, TL, T1k, Ta, T1z, TG; E T1j; { E T1, T2, T1f, T1g; T1 = Rp[0]; T2 = Rm[WS(rs, 7)]; T3 = T1 + T2; T1e = T1 - T2; { E Ty, Tz, T4, T5; Ty = Ip[0]; Tz = Im[WS(rs, 7)]; TA = Ty + Tz; T1C = Ty - Tz; T4 = Rp[WS(rs, 4)]; T5 = Rm[WS(rs, 3)]; T6 = T4 + T5; Tx = T4 - T5; } T1f = Ip[WS(rs, 4)]; T1g = Im[WS(rs, 3)]; T1h = T1f + T1g; T1D = T1f - T1g; { E Tb, Tc, TH, TI, TJ, TK; Tb = Rm[WS(rs, 1)]; Tc = Rp[WS(rs, 6)]; TH = Tb - Tc; TI = Im[WS(rs, 1)]; TJ = Ip[WS(rs, 6)]; TK = TI + TJ; Td = Tb + Tc; T1A = TJ - TI; TL = TH + TK; T1k = TH - TK; } { E T8, T9, TC, TD, TE, TF; T8 = Rp[WS(rs, 2)]; T9 = Rm[WS(rs, 5)]; TC = T8 - T9; TD = Ip[WS(rs, 2)]; TE = Im[WS(rs, 5)]; TF = TD + TE; Ta = T8 + T9; T1z = TD - TE; TG = TC + TF; T1j = TC - TF; } } { E T7, Te, T30, T31; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; T20 = T7 - Te; T30 = TA - Tx; T31 = T1j - T1k; T32 = FMA(KP707106781, T31, T30); T3Q = FNMS(KP707106781, T31, T30); } { E T3d, T3e, TB, TM; T3d = T1e + T1h; T3e = TG + TL; T3f = FNMS(KP707106781, T3e, T3d); T3V = FMA(KP707106781, T3e, T3d); TB = Tx + TA; TM = TG - TL; TN = FMA(KP707106781, TM, TB); T2a = FNMS(KP707106781, TM, TB); } { E T1i, T1l, T2E, T2F; T1i = T1e - T1h; T1l = T1j + T1k; T1m = FMA(KP707106781, T1l, T1i); T2f = FNMS(KP707106781, T1l, T1i); T2E = T3 - T6; T2F = T1A - T1z; T2G = T2E + T2F; T3G = T2E - T2F; } { E T2R, T2S, T1B, T1E; T2R = Ta - Td; T2S = T1C - T1D; T2T = T2R + T2S; T3L = T2S - T2R; T1B = T1z + T1A; T1E = T1C + T1D; T1F = T1B + T1E; T26 = T1E - T1B; } } { E Ti, T1s, Tl, T1t, TS, TX, T34, T33, T2I, T2H, Tp, T1v, Ts, T1w, T13; E T18, T37, T36, T2L, T2K; { E TT, TR, TO, TW; { E Tg, Th, TP, TQ; Tg = Rp[WS(rs, 1)]; Th = Rm[WS(rs, 6)]; Ti = Tg + Th; TT = Tg - Th; TP = Ip[WS(rs, 1)]; TQ = Im[WS(rs, 6)]; TR = TP + TQ; T1s = TP - TQ; } { E Tj, Tk, TU, TV; Tj = Rp[WS(rs, 5)]; Tk = Rm[WS(rs, 2)]; Tl = Tj + Tk; TO = Tj - Tk; TU = Ip[WS(rs, 5)]; TV = Im[WS(rs, 2)]; TW = TU + TV; T1t = TU - TV; } TS = TO + TR; TX = TT - TW; T34 = TR - TO; T33 = TT + TW; T2I = T1s - T1t; T2H = Ti - Tl; } { E T14, T12, TZ, T17; { E Tn, To, T10, T11; Tn = Rm[0]; To = Rp[WS(rs, 7)]; Tp = Tn + To; T14 = Tn - To; T10 = Im[0]; T11 = Ip[WS(rs, 7)]; T12 = T10 + T11; T1v = T11 - T10; } { E Tq, Tr, T15, T16; Tq = Rp[WS(rs, 3)]; Tr = Rm[WS(rs, 4)]; Ts = Tq + Tr; TZ = Tq - Tr; T15 = Ip[WS(rs, 3)]; T16 = Im[WS(rs, 4)]; T17 = T15 + T16; T1w = T15 - T16; } T13 = TZ - T12; T18 = T14 - T17; T37 = TZ + T12; T36 = T14 + T17; T2L = T1v - T1w; T2K = Tp - Ts; } T2J = T2H - T2I; T2M = T2K + T2L; T2N = T2J + T2M; T2U = T2H + T2I; T2V = T2L - T2K; T3H = T2V - T2U; { E Tm, Tt, T3g, T3h; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; T25 = Tm - Tt; T3g = FNMS(KP414213562, T33, T34); T3h = FNMS(KP414213562, T36, T37); T3i = T3g + T3h; T3R = T3h - T3g; } { E TY, T19, T1u, T1x; TY = FMA(KP414213562, TX, TS); T19 = FNMS(KP414213562, T18, T13); T1a = TY + T19; T2g = T19 - TY; T1u = T1s + T1t; T1x = T1v + T1w; T1y = T1u + T1x; T21 = T1x - T1u; } { E T35, T38, T1n, T1o; T35 = FMA(KP414213562, T34, T33); T38 = FMA(KP414213562, T37, T36); T39 = T35 - T38; T3W = T35 + T38; T1n = FNMS(KP414213562, TS, TX); T1o = FMA(KP414213562, T13, T18); T1p = T1n + T1o; T2b = T1n - T1o; } } { E Tv, T1G, T1b, T1q, T1c, T1H, Tw, T1r, T1I, T1d; Tv = Tf + Tu; T1G = T1y + T1F; T1b = FMA(KP923879532, T1a, TN); T1q = FMA(KP923879532, T1p, T1m); Tw = W[0]; T1c = Tw * T1b; T1H = Tw * T1q; T1d = W[1]; T1r = FMA(T1d, T1q, T1c); T1I = FNMS(T1d, T1b, T1H); Rp[0] = Tv - T1r; Ip[0] = T1G + T1I; Rm[0] = Tv + T1r; Im[0] = T1I - T1G; } { E T1N, T1J, T1L, T1M, T1V, T1Q, T1T, T1R, T1X, T1K, T1P; T1N = T1F - T1y; T1K = Tf - Tu; T1J = W[14]; T1L = T1J * T1K; T1M = W[15]; T1V = T1M * T1K; T1Q = FNMS(KP923879532, T1a, TN); T1T = FNMS(KP923879532, T1p, T1m); T1P = W[16]; T1R = T1P * T1Q; T1X = T1P * T1T; { E T1O, T1W, T1U, T1Y, T1S; T1O = FNMS(T1M, T1N, T1L); T1W = FMA(T1J, T1N, T1V); T1S = W[17]; T1U = FMA(T1S, T1T, T1R); T1Y = FNMS(T1S, T1Q, T1X); Rp[WS(rs, 4)] = T1O - T1U; Ip[WS(rs, 4)] = T1W + T1Y; Rm[WS(rs, 4)] = T1O + T1U; Im[WS(rs, 4)] = T1Y - T1W; } } { E T2r, T2n, T2p, T2q, T2z, T2u, T2x, T2v, T2B, T2o, T2t; T2r = T26 - T25; T2o = T20 - T21; T2n = W[22]; T2p = T2n * T2o; T2q = W[23]; T2z = T2q * T2o; T2u = FNMS(KP923879532, T2b, T2a); T2x = FNMS(KP923879532, T2g, T2f); T2t = W[24]; T2v = T2t * T2u; T2B = T2t * T2x; { E T2s, T2A, T2y, T2C, T2w; T2s = FNMS(T2q, T2r, T2p); T2A = FMA(T2n, T2r, T2z); T2w = W[25]; T2y = FMA(T2w, T2x, T2v); T2C = FNMS(T2w, T2u, T2B); Rp[WS(rs, 6)] = T2s - T2y; Ip[WS(rs, 6)] = T2A + T2C; Rm[WS(rs, 6)] = T2s + T2y; Im[WS(rs, 6)] = T2C - T2A; } } { E T27, T1Z, T23, T24, T2j, T2c, T2h, T2d, T2l, T22, T29; T27 = T25 + T26; T22 = T20 + T21; T1Z = W[6]; T23 = T1Z * T22; T24 = W[7]; T2j = T24 * T22; T2c = FMA(KP923879532, T2b, T2a); T2h = FMA(KP923879532, T2g, T2f); T29 = W[8]; T2d = T29 * T2c; T2l = T29 * T2h; { E T28, T2k, T2i, T2m, T2e; T28 = FNMS(T24, T27, T23); T2k = FMA(T1Z, T27, T2j); T2e = W[9]; T2i = FMA(T2e, T2h, T2d); T2m = FNMS(T2e, T2c, T2l); Rp[WS(rs, 2)] = T28 - T2i; Ip[WS(rs, 2)] = T2k + T2m; Rm[WS(rs, 2)] = T28 + T2i; Im[WS(rs, 2)] = T2m - T2k; } } { E T3N, T47, T43, T45, T46, T4f, T3F, T3J, T3K, T3Z, T3S, T3X, T3T, T41, T4a; E T4d, T4b, T4h; { E T3M, T44, T3I, T3P, T49; T3M = T2J - T2M; T3N = FMA(KP707106781, T3M, T3L); T47 = FNMS(KP707106781, T3M, T3L); T44 = FNMS(KP707106781, T3H, T3G); T43 = W[26]; T45 = T43 * T44; T46 = W[27]; T4f = T46 * T44; T3I = FMA(KP707106781, T3H, T3G); T3F = W[10]; T3J = T3F * T3I; T3K = W[11]; T3Z = T3K * T3I; T3S = FMA(KP923879532, T3R, T3Q); T3X = FNMS(KP923879532, T3W, T3V); T3P = W[12]; T3T = T3P * T3S; T41 = T3P * T3X; T4a = FNMS(KP923879532, T3R, T3Q); T4d = FMA(KP923879532, T3W, T3V); T49 = W[28]; T4b = T49 * T4a; T4h = T49 * T4d; } { E T3O, T40, T3Y, T42, T3U; T3O = FNMS(T3K, T3N, T3J); T40 = FMA(T3F, T3N, T3Z); T3U = W[13]; T3Y = FMA(T3U, T3X, T3T); T42 = FNMS(T3U, T3S, T41); Rp[WS(rs, 3)] = T3O - T3Y; Ip[WS(rs, 3)] = T40 + T42; Rm[WS(rs, 3)] = T3O + T3Y; Im[WS(rs, 3)] = T42 - T40; } { E T48, T4g, T4e, T4i, T4c; T48 = FNMS(T46, T47, T45); T4g = FMA(T43, T47, T4f); T4c = W[29]; T4e = FMA(T4c, T4d, T4b); T4i = FNMS(T4c, T4a, T4h); Rp[WS(rs, 7)] = T48 - T4e; Ip[WS(rs, 7)] = T4g + T4i; Rm[WS(rs, 7)] = T48 + T4e; Im[WS(rs, 7)] = T4i - T4g; } } { E T2X, T3t, T3p, T3r, T3s, T3B, T2D, T2P, T2Q, T3l, T3a, T3j, T3b, T3n, T3w; E T3z, T3x, T3D; { E T2W, T3q, T2O, T2Z, T3v; T2W = T2U + T2V; T2X = FMA(KP707106781, T2W, T2T); T3t = FNMS(KP707106781, T2W, T2T); T3q = FNMS(KP707106781, T2N, T2G); T3p = W[18]; T3r = T3p * T3q; T3s = W[19]; T3B = T3s * T3q; T2O = FMA(KP707106781, T2N, T2G); T2D = W[2]; T2P = T2D * T2O; T2Q = W[3]; T3l = T2Q * T2O; T3a = FMA(KP923879532, T39, T32); T3j = FNMS(KP923879532, T3i, T3f); T2Z = W[4]; T3b = T2Z * T3a; T3n = T2Z * T3j; T3w = FNMS(KP923879532, T39, T32); T3z = FMA(KP923879532, T3i, T3f); T3v = W[20]; T3x = T3v * T3w; T3D = T3v * T3z; } { E T2Y, T3m, T3k, T3o, T3c; T2Y = FNMS(T2Q, T2X, T2P); T3m = FMA(T2D, T2X, T3l); T3c = W[5]; T3k = FMA(T3c, T3j, T3b); T3o = FNMS(T3c, T3a, T3n); Rp[WS(rs, 1)] = T2Y - T3k; Ip[WS(rs, 1)] = T3m + T3o; Rm[WS(rs, 1)] = T2Y + T3k; Im[WS(rs, 1)] = T3o - T3m; } { E T3u, T3C, T3A, T3E, T3y; T3u = FNMS(T3s, T3t, T3r); T3C = FMA(T3p, T3t, T3B); T3y = W[21]; T3A = FMA(T3y, T3z, T3x); T3E = FNMS(T3y, T3w, T3D); Rp[WS(rs, 5)] = T3u - T3A; Ip[WS(rs, 5)] = T3C + T3E; Rm[WS(rs, 5)] = T3u + T3A; Im[WS(rs, 5)] = T3E - T3C; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 16}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, {136, 30, 70, 0} }; void X(codelet_hc2cbdft_16) (planner *p) { X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT); } #else /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */ /* * This function contains 206 FP additions, 84 FP multiplications, * (or, 168 additions, 46 multiplications, 38 fused multiply/add), * 60 stack variables, 3 constants, and 64 memory accesses */ #include "rdft/scalar/hc2cb.h" static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { INT m; for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { E TB, T2L, T30, T1n, Tf, T1U, T2H, T3p, T1E, T1Z, TM, T31, T2s, T3k, T1i; E T2M, Tu, T1Y, T2Q, T2X, T2T, T2Y, TY, T1d, T19, T1e, T2v, T2C, T2y, T2D; E T1x, T1V; { E T3, T1j, TA, T1B, T6, Tx, T1m, T1C, Ta, TC, TF, T1y, Td, TH, TK; E T1z; { E T1, T2, Ty, Tz; T1 = Rp[0]; T2 = Rm[WS(rs, 7)]; T3 = T1 + T2; T1j = T1 - T2; Ty = Ip[0]; Tz = Im[WS(rs, 7)]; TA = Ty + Tz; T1B = Ty - Tz; } { E T4, T5, T1k, T1l; T4 = Rp[WS(rs, 4)]; T5 = Rm[WS(rs, 3)]; T6 = T4 + T5; Tx = T4 - T5; T1k = Ip[WS(rs, 4)]; T1l = Im[WS(rs, 3)]; T1m = T1k + T1l; T1C = T1k - T1l; } { E T8, T9, TD, TE; T8 = Rp[WS(rs, 2)]; T9 = Rm[WS(rs, 5)]; Ta = T8 + T9; TC = T8 - T9; TD = Ip[WS(rs, 2)]; TE = Im[WS(rs, 5)]; TF = TD + TE; T1y = TD - TE; } { E Tb, Tc, TI, TJ; Tb = Rm[WS(rs, 1)]; Tc = Rp[WS(rs, 6)]; Td = Tb + Tc; TH = Tb - Tc; TI = Im[WS(rs, 1)]; TJ = Ip[WS(rs, 6)]; TK = TI + TJ; T1z = TJ - TI; } { E T7, Te, TG, TL; TB = Tx + TA; T2L = TA - Tx; T30 = T1j + T1m; T1n = T1j - T1m; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; T1U = T7 - Te; { E T2F, T2G, T1A, T1D; T2F = Ta - Td; T2G = T1B - T1C; T2H = T2F + T2G; T3p = T2G - T2F; T1A = T1y + T1z; T1D = T1B + T1C; T1E = T1A + T1D; T1Z = T1D - T1A; } TG = TC + TF; TL = TH + TK; TM = KP707106781 * (TG - TL); T31 = KP707106781 * (TG + TL); { E T2q, T2r, T1g, T1h; T2q = T3 - T6; T2r = T1z - T1y; T2s = T2q + T2r; T3k = T2q - T2r; T1g = TC - TF; T1h = TH - TK; T1i = KP707106781 * (T1g + T1h); T2M = KP707106781 * (T1g - T1h); } } } { E Ti, TT, TR, T1r, Tl, TO, TW, T1s, Tp, T14, T12, T1u, Ts, TZ, T17; E T1v; { E Tg, Th, TP, TQ; Tg = Rp[WS(rs, 1)]; Th = Rm[WS(rs, 6)]; Ti = Tg + Th; TT = Tg - Th; TP = Ip[WS(rs, 1)]; TQ = Im[WS(rs, 6)]; TR = TP + TQ; T1r = TP - TQ; } { E Tj, Tk, TU, TV; Tj = Rp[WS(rs, 5)]; Tk = Rm[WS(rs, 2)]; Tl = Tj + Tk; TO = Tj - Tk; TU = Ip[WS(rs, 5)]; TV = Im[WS(rs, 2)]; TW = TU + TV; T1s = TU - TV; } { E Tn, To, T10, T11; Tn = Rm[0]; To = Rp[WS(rs, 7)]; Tp = Tn + To; T14 = Tn - To; T10 = Im[0]; T11 = Ip[WS(rs, 7)]; T12 = T10 + T11; T1u = T11 - T10; } { E Tq, Tr, T15, T16; Tq = Rp[WS(rs, 3)]; Tr = Rm[WS(rs, 4)]; Ts = Tq + Tr; TZ = Tq - Tr; T15 = Ip[WS(rs, 3)]; T16 = Im[WS(rs, 4)]; T17 = T15 + T16; T1v = T15 - T16; } { E Tm, Tt, T2O, T2P; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; T1Y = Tm - Tt; T2O = TR - TO; T2P = TT + TW; T2Q = FMA(KP382683432, T2O, KP923879532 * T2P); T2X = FNMS(KP923879532, T2O, KP382683432 * T2P); } { E T2R, T2S, TS, TX; T2R = TZ + T12; T2S = T14 + T17; T2T = FMA(KP382683432, T2R, KP923879532 * T2S); T2Y = FNMS(KP923879532, T2R, KP382683432 * T2S); TS = TO + TR; TX = TT - TW; TY = FMA(KP923879532, TS, KP382683432 * TX); T1d = FNMS(KP382683432, TS, KP923879532 * TX); } { E T13, T18, T2t, T2u; T13 = TZ - T12; T18 = T14 - T17; T19 = FNMS(KP382683432, T18, KP923879532 * T13); T1e = FMA(KP382683432, T13, KP923879532 * T18); T2t = Ti - Tl; T2u = T1r - T1s; T2v = T2t - T2u; T2C = T2t + T2u; } { E T2w, T2x, T1t, T1w; T2w = Tp - Ts; T2x = T1u - T1v; T2y = T2w + T2x; T2D = T2x - T2w; T1t = T1r + T1s; T1w = T1u + T1v; T1x = T1t + T1w; T1V = T1w - T1t; } } { E Tv, T1F, T1b, T1N, T1p, T1P, T1L, T1R; Tv = Tf + Tu; T1F = T1x + T1E; { E TN, T1a, T1f, T1o; TN = TB + TM; T1a = TY + T19; T1b = TN + T1a; T1N = TN - T1a; T1f = T1d + T1e; T1o = T1i + T1n; T1p = T1f + T1o; T1P = T1o - T1f; { E T1I, T1K, T1H, T1J; T1I = Tf - Tu; T1K = T1E - T1x; T1H = W[14]; T1J = W[15]; T1L = FNMS(T1J, T1K, T1H * T1I); T1R = FMA(T1J, T1I, T1H * T1K); } } { E T1q, T1G, Tw, T1c; Tw = W[0]; T1c = W[1]; T1q = FMA(Tw, T1b, T1c * T1p); T1G = FNMS(T1c, T1b, Tw * T1p); Rp[0] = Tv - T1q; Ip[0] = T1F + T1G; Rm[0] = Tv + T1q; Im[0] = T1G - T1F; } { E T1Q, T1S, T1M, T1O; T1M = W[16]; T1O = W[17]; T1Q = FMA(T1M, T1N, T1O * T1P); T1S = FNMS(T1O, T1N, T1M * T1P); Rp[WS(rs, 4)] = T1L - T1Q; Ip[WS(rs, 4)] = T1R + T1S; Rm[WS(rs, 4)] = T1L + T1Q; Im[WS(rs, 4)] = T1S - T1R; } } { E T25, T2j, T29, T2l, T21, T2b, T2h, T2n; { E T23, T24, T27, T28; T23 = TB - TM; T24 = T1d - T1e; T25 = T23 + T24; T2j = T23 - T24; T27 = T19 - TY; T28 = T1n - T1i; T29 = T27 + T28; T2l = T28 - T27; } { E T1W, T20, T1T, T1X; T1W = T1U + T1V; T20 = T1Y + T1Z; T1T = W[6]; T1X = W[7]; T21 = FNMS(T1X, T20, T1T * T1W); T2b = FMA(T1X, T1W, T1T * T20); } { E T2e, T2g, T2d, T2f; T2e = T1U - T1V; T2g = T1Z - T1Y; T2d = W[22]; T2f = W[23]; T2h = FNMS(T2f, T2g, T2d * T2e); T2n = FMA(T2f, T2e, T2d * T2g); } { E T2a, T2c, T22, T26; T22 = W[8]; T26 = W[9]; T2a = FMA(T22, T25, T26 * T29); T2c = FNMS(T26, T25, T22 * T29); Rp[WS(rs, 2)] = T21 - T2a; Ip[WS(rs, 2)] = T2b + T2c; Rm[WS(rs, 2)] = T21 + T2a; Im[WS(rs, 2)] = T2c - T2b; } { E T2m, T2o, T2i, T2k; T2i = W[24]; T2k = W[25]; T2m = FMA(T2i, T2j, T2k * T2l); T2o = FNMS(T2k, T2j, T2i * T2l); Rp[WS(rs, 6)] = T2h - T2m; Ip[WS(rs, 6)] = T2n + T2o; Rm[WS(rs, 6)] = T2h + T2m; Im[WS(rs, 6)] = T2o - T2n; } } { E T2A, T38, T2I, T3a, T2V, T3d, T33, T3f, T2z, T2E; T2z = KP707106781 * (T2v + T2y); T2A = T2s + T2z; T38 = T2s - T2z; T2E = KP707106781 * (T2C + T2D); T2I = T2E + T2H; T3a = T2H - T2E; { E T2N, T2U, T2Z, T32; T2N = T2L + T2M; T2U = T2Q - T2T; T2V = T2N + T2U; T3d = T2N - T2U; T2Z = T2X + T2Y; T32 = T30 - T31; T33 = T2Z + T32; T3f = T32 - T2Z; } { E T2J, T35, T34, T36; { E T2p, T2B, T2K, T2W; T2p = W[2]; T2B = W[3]; T2J = FNMS(T2B, T2I, T2p * T2A); T35 = FMA(T2B, T2A, T2p * T2I); T2K = W[4]; T2W = W[5]; T34 = FMA(T2K, T2V, T2W * T33); T36 = FNMS(T2W, T2V, T2K * T33); } Rp[WS(rs, 1)] = T2J - T34; Ip[WS(rs, 1)] = T35 + T36; Rm[WS(rs, 1)] = T2J + T34; Im[WS(rs, 1)] = T36 - T35; } { E T3b, T3h, T3g, T3i; { E T37, T39, T3c, T3e; T37 = W[18]; T39 = W[19]; T3b = FNMS(T39, T3a, T37 * T38); T3h = FMA(T39, T38, T37 * T3a); T3c = W[20]; T3e = W[21]; T3g = FMA(T3c, T3d, T3e * T3f); T3i = FNMS(T3e, T3d, T3c * T3f); } Rp[WS(rs, 5)] = T3b - T3g; Ip[WS(rs, 5)] = T3h + T3i; Rm[WS(rs, 5)] = T3b + T3g; Im[WS(rs, 5)] = T3i - T3h; } } { E T3m, T3E, T3q, T3G, T3v, T3J, T3z, T3L, T3l, T3o; T3l = KP707106781 * (T2D - T2C); T3m = T3k + T3l; T3E = T3k - T3l; T3o = KP707106781 * (T2v - T2y); T3q = T3o + T3p; T3G = T3p - T3o; { E T3t, T3u, T3x, T3y; T3t = T2L - T2M; T3u = T2X - T2Y; T3v = T3t + T3u; T3J = T3t - T3u; T3x = T31 + T30; T3y = T2Q + T2T; T3z = T3x - T3y; T3L = T3y + T3x; } { E T3r, T3B, T3A, T3C; { E T3j, T3n, T3s, T3w; T3j = W[10]; T3n = W[11]; T3r = FNMS(T3n, T3q, T3j * T3m); T3B = FMA(T3n, T3m, T3j * T3q); T3s = W[12]; T3w = W[13]; T3A = FMA(T3s, T3v, T3w * T3z); T3C = FNMS(T3w, T3v, T3s * T3z); } Rp[WS(rs, 3)] = T3r - T3A; Ip[WS(rs, 3)] = T3B + T3C; Rm[WS(rs, 3)] = T3r + T3A; Im[WS(rs, 3)] = T3C - T3B; } { E T3H, T3N, T3M, T3O; { E T3D, T3F, T3I, T3K; T3D = W[26]; T3F = W[27]; T3H = FNMS(T3F, T3G, T3D * T3E); T3N = FMA(T3F, T3E, T3D * T3G); T3I = W[28]; T3K = W[29]; T3M = FMA(T3I, T3J, T3K * T3L); T3O = FNMS(T3K, T3J, T3I * T3L); } Rp[WS(rs, 7)] = T3H - T3M; Ip[WS(rs, 7)] = T3N + T3O; Rm[WS(rs, 7)] = T3H + T3M; Im[WS(rs, 7)] = T3O - T3N; } } } } } static const tw_instr twinstr[] = { {TW_FULL, 1, 16}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, {168, 46, 38, 0} }; void X(codelet_hc2cbdft_16) (planner *p) { X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT); } #endif