/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:44 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include rdft/scalar/r2cbIII.h */ /* * This function contains 64 FP additions, 43 FP multiplications, * (or, 21 additions, 0 multiplications, 43 fused multiply/add), * 42 stack variables, 9 constants, and 30 memory accesses */ #include "rdft/scalar/r2cbIII.h" static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { E Tk, TA, T5, Th, Tz, T6, Tn, TX, TR, Td, Tm, TI, Tv, TN, TD; E TL, TM, Ti, Tj, T12, Te, T11; Ti = Ci[WS(csi, 4)]; Tj = Ci[WS(csi, 1)]; Tk = FMA(KP618033988, Tj, Ti); TA = FNMS(KP618033988, Ti, Tj); { E T1, T4, Tg, T2, T3, Tf; T1 = Cr[WS(csr, 7)]; T2 = Cr[WS(csr, 4)]; T3 = Cr[WS(csr, 1)]; T4 = T2 + T3; Tg = T2 - T3; T5 = FMA(KP2_000000000, T4, T1); Tf = FNMS(KP500000000, T4, T1); Th = FMA(KP1_118033988, Tg, Tf); Tz = FNMS(KP1_118033988, Tg, Tf); } { E Tc, TP, T9, TQ; T6 = Cr[WS(csr, 2)]; { E Ta, Tb, T7, T8; Ta = Cr[WS(csr, 3)]; Tb = Cr[WS(csr, 6)]; Tc = Ta + Tb; TP = Ta - Tb; T7 = Cr[0]; T8 = Cr[WS(csr, 5)]; T9 = T7 + T8; TQ = T7 - T8; } Tn = T9 - Tc; TX = FMA(KP618033988, TP, TQ); TR = FNMS(KP618033988, TQ, TP); Td = T9 + Tc; Tm = FNMS(KP250000000, Td, T6); } { E Tu, TK, Tr, TJ; TI = Ci[WS(csi, 2)]; { E Ts, Tt, Tp, Tq; Ts = Ci[WS(csi, 3)]; Tt = Ci[WS(csi, 6)]; Tu = Ts - Tt; TK = Ts + Tt; Tp = Ci[0]; Tq = Ci[WS(csi, 5)]; Tr = Tp + Tq; TJ = Tq - Tp; } Tv = FMA(KP618033988, Tu, Tr); TN = TJ + TK; TD = FNMS(KP618033988, Tr, Tu); TL = TJ - TK; TM = FNMS(KP250000000, TL, TI); } T12 = TL + TI; Te = T6 + Td; T11 = Te - T5; R0[0] = FMA(KP2_000000000, Te, T5); R0[WS(rs, 5)] = FMS(KP1_732050807, T12, T11); R1[WS(rs, 2)] = FMA(KP1_732050807, T12, T11); { E TB, TF, TE, TG, TS, TU, TC, TO, TH, TT; TB = FNMS(KP1_902113032, TA, Tz); TF = FMA(KP1_902113032, TA, Tz); TC = FNMS(KP559016994, Tn, Tm); TE = FMA(KP951056516, TD, TC); TG = FNMS(KP951056516, TD, TC); TO = FNMS(KP559016994, TN, TM); TS = FMA(KP951056516, TR, TO); TU = FNMS(KP951056516, TR, TO); R0[WS(rs, 6)] = FMA(KP2_000000000, TE, TB); R1[WS(rs, 1)] = -(FMA(KP2_000000000, TG, TF)); TH = TB - TE; R0[WS(rs, 1)] = FNMS(KP1_732050807, TS, TH); R1[WS(rs, 3)] = -(FMA(KP1_732050807, TS, TH)); TT = TF - TG; R0[WS(rs, 4)] = FNMS(KP1_732050807, TU, TT); R1[WS(rs, 6)] = -(FMA(KP1_732050807, TU, TT)); } { E Tl, Tx, Tw, Ty, TY, T10, To, TW, TV, TZ; Tl = FNMS(KP1_902113032, Tk, Th); Tx = FMA(KP1_902113032, Tk, Th); To = FMA(KP559016994, Tn, Tm); Tw = FMA(KP951056516, Tv, To); Ty = FNMS(KP951056516, Tv, To); TW = FMA(KP559016994, TN, TM); TY = FNMS(KP951056516, TX, TW); T10 = FMA(KP951056516, TX, TW); R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tw, Tl)); R0[WS(rs, 3)] = FMA(KP2_000000000, Ty, Tx); TV = Ty - Tx; R1[0] = FNMS(KP1_732050807, TY, TV); R1[WS(rs, 5)] = FMA(KP1_732050807, TY, TV); TZ = Tl - Tw; R0[WS(rs, 7)] = FNMS(KP1_732050807, T10, TZ); R0[WS(rs, 2)] = FMA(KP1_732050807, T10, TZ); } } } } static const kr2c_desc desc = { 15, "r2cbIII_15", {21, 0, 43, 0}, &GENUS }; void X(codelet_r2cbIII_15) (planner *p) { X(kr2c_register) (p, r2cbIII_15, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include rdft/scalar/r2cbIII.h */ /* * This function contains 64 FP additions, 26 FP multiplications, * (or, 49 additions, 11 multiplications, 15 fused multiply/add), * 47 stack variables, 14 constants, and 30 memory accesses */ #include "rdft/scalar/r2cbIII.h" static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP433012701, +0.433012701892219323381861585376468091735701313); DK(KP968245836, +0.968245836551854221294816349945599902708230426); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP1_647278207, +1.647278207092663851754840078556380006059321028); DK(KP1_018073920, +1.018073920910254366901961726787815297021466329); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { E Tv, TD, T5, Ts, TC, T6, Tf, TW, TK, Td, Tg, TP, To, TN, TA; E TO, TQ, Tt, Tu, T12, Te, T11; Tt = Ci[WS(csi, 4)]; Tu = Ci[WS(csi, 1)]; Tv = FMA(KP1_902113032, Tt, KP1_175570504 * Tu); TD = FNMS(KP1_175570504, Tt, KP1_902113032 * Tu); { E T1, T4, Tq, T2, T3, Tr; T1 = Cr[WS(csr, 7)]; T2 = Cr[WS(csr, 4)]; T3 = Cr[WS(csr, 1)]; T4 = T2 + T3; Tq = KP1_118033988 * (T2 - T3); T5 = FMA(KP2_000000000, T4, T1); Tr = FNMS(KP500000000, T4, T1); Ts = Tq + Tr; TC = Tr - Tq; } { E Tc, TJ, T9, TI; T6 = Cr[WS(csr, 2)]; { E Ta, Tb, T7, T8; Ta = Cr[WS(csr, 3)]; Tb = Cr[WS(csr, 6)]; Tc = Ta + Tb; TJ = Ta - Tb; T7 = Cr[0]; T8 = Cr[WS(csr, 5)]; T9 = T7 + T8; TI = T7 - T8; } Tf = KP559016994 * (T9 - Tc); TW = FNMS(KP1_647278207, TJ, KP1_018073920 * TI); TK = FMA(KP1_647278207, TI, KP1_018073920 * TJ); Td = T9 + Tc; Tg = FNMS(KP250000000, Td, T6); } { E Tn, TM, Tk, TL; TP = Ci[WS(csi, 2)]; { E Tl, Tm, Ti, Tj; Tl = Ci[WS(csi, 3)]; Tm = Ci[WS(csi, 6)]; Tn = Tl - Tm; TM = Tl + Tm; Ti = Ci[0]; Tj = Ci[WS(csi, 5)]; Tk = Ti + Tj; TL = Ti - Tj; } To = FMA(KP951056516, Tk, KP587785252 * Tn); TN = KP968245836 * (TL - TM); TA = FNMS(KP587785252, Tk, KP951056516 * Tn); TO = TL + TM; TQ = FMA(KP433012701, TO, KP1_732050807 * TP); } T12 = KP1_732050807 * (TP - TO); Te = T6 + Td; T11 = Te - T5; R0[0] = FMA(KP2_000000000, Te, T5); R0[WS(rs, 5)] = T12 - T11; R1[WS(rs, 2)] = T11 + T12; { E TE, TG, TB, TF, TY, T10, Tz, TX, TV, TZ; TE = TC - TD; TG = TC + TD; Tz = Tg - Tf; TB = Tz + TA; TF = TA - Tz; TX = TN + TQ; TY = TW - TX; T10 = TW + TX; R0[WS(rs, 6)] = FMA(KP2_000000000, TB, TE); R1[WS(rs, 1)] = FMS(KP2_000000000, TF, TG); TV = TE - TB; R0[WS(rs, 1)] = TV + TY; R1[WS(rs, 3)] = TY - TV; TZ = TF + TG; R0[WS(rs, 4)] = TZ - T10; R1[WS(rs, 6)] = -(TZ + T10); } { E Tw, Ty, Tp, Tx, TS, TU, Th, TR, TH, TT; Tw = Ts - Tv; Ty = Ts + Tv; Th = Tf + Tg; Tp = Th + To; Tx = Th - To; TR = TN - TQ; TS = TK + TR; TU = TR - TK; R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tp, Tw)); R0[WS(rs, 3)] = FMA(KP2_000000000, Tx, Ty); TH = Tx - Ty; R1[WS(rs, 5)] = TH - TS; R1[0] = TH + TS; TT = Tw - Tp; R0[WS(rs, 2)] = TT - TU; R0[WS(rs, 7)] = TT + TU; } } } } static const kr2c_desc desc = { 15, "r2cbIII_15", {49, 11, 15, 0}, &GENUS }; void X(codelet_r2cbIII_15) (planner *p) { X(kr2c_register) (p, r2cbIII_15, &desc); } #endif