/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:44 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cbIII_16 -dft-III -include rdft/scalar/r2cbIII.h */ /* * This function contains 66 FP additions, 36 FP multiplications, * (or, 46 additions, 16 multiplications, 20 fused multiply/add), * 40 stack variables, 9 constants, and 32 memory accesses */ #include "rdft/scalar/r2cbIII.h" static void r2cbIII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { E T7, TW, T13, Tj, TA, TK, TP, TH, Te, TX, T12, To, Tt, TC, TS; E TB, TT, TY; { E T3, Tf, Tz, TU, T6, Tw, Ti, TV; { E T1, T2, Tx, Ty; T1 = Cr[0]; T2 = Cr[WS(csr, 7)]; T3 = T1 + T2; Tf = T1 - T2; Tx = Ci[0]; Ty = Ci[WS(csi, 7)]; Tz = Tx + Ty; TU = Ty - Tx; } { E T4, T5, Tg, Th; T4 = Cr[WS(csr, 4)]; T5 = Cr[WS(csr, 3)]; T6 = T4 + T5; Tw = T4 - T5; Tg = Ci[WS(csi, 4)]; Th = Ci[WS(csi, 3)]; Ti = Tg + Th; TV = Th - Tg; } T7 = T3 + T6; TW = TU - TV; T13 = TV + TU; Tj = Tf - Ti; TA = Tw + Tz; TK = Tw - Tz; TP = T3 - T6; TH = Tf + Ti; } { E Ta, Tk, Tn, TR, Td, Tp, Ts, TQ; { E T8, T9, Tl, Tm; T8 = Cr[WS(csr, 2)]; T9 = Cr[WS(csr, 5)]; Ta = T8 + T9; Tk = T8 - T9; Tl = Ci[WS(csi, 2)]; Tm = Ci[WS(csi, 5)]; Tn = Tl + Tm; TR = Tl - Tm; } { E Tb, Tc, Tq, Tr; Tb = Cr[WS(csr, 1)]; Tc = Cr[WS(csr, 6)]; Td = Tb + Tc; Tp = Tb - Tc; Tq = Ci[WS(csi, 1)]; Tr = Ci[WS(csi, 6)]; Ts = Tq + Tr; TQ = Tr - Tq; } Te = Ta + Td; TX = Ta - Td; T12 = TR + TQ; To = Tk - Tn; Tt = Tp - Ts; TC = Tk + Tn; TS = TQ - TR; TB = Tp + Ts; } R0[0] = KP2_000000000 * (T7 + Te); R0[WS(rs, 4)] = KP2_000000000 * (T13 - T12); TT = TP + TS; TY = TW - TX; R0[WS(rs, 1)] = KP1_847759065 * (FMA(KP414213562, TY, TT)); R0[WS(rs, 5)] = KP1_847759065 * (FNMS(KP414213562, TT, TY)); { E T11, T14, TZ, T10; T11 = T7 - Te; T14 = T12 + T13; R0[WS(rs, 2)] = KP1_414213562 * (T11 + T14); R0[WS(rs, 6)] = KP1_414213562 * (T14 - T11); TZ = TX + TW; T10 = TP - TS; R0[WS(rs, 3)] = KP1_847759065 * (FMA(KP414213562, T10, TZ)); R0[WS(rs, 7)] = -(KP1_847759065 * (FNMS(KP414213562, TZ, T10))); } { E TJ, TO, TM, TN, TI, TL; TI = TC + TB; TJ = FNMS(KP707106781, TI, TH); TO = FMA(KP707106781, TI, TH); TL = To - Tt; TM = FNMS(KP707106781, TL, TK); TN = FMA(KP707106781, TL, TK); R1[WS(rs, 1)] = KP1_662939224 * (FMA(KP668178637, TM, TJ)); R1[WS(rs, 7)] = -(KP1_961570560 * (FNMS(KP198912367, TN, TO))); R1[WS(rs, 5)] = KP1_662939224 * (FNMS(KP668178637, TJ, TM)); R1[WS(rs, 3)] = KP1_961570560 * (FMA(KP198912367, TO, TN)); } { E Tv, TG, TE, TF, Tu, TD; Tu = To + Tt; Tv = FMA(KP707106781, Tu, Tj); TG = FNMS(KP707106781, Tu, Tj); TD = TB - TC; TE = FNMS(KP707106781, TD, TA); TF = FMA(KP707106781, TD, TA); R1[0] = KP1_961570560 * (FNMS(KP198912367, TE, Tv)); R1[WS(rs, 6)] = -(KP1_662939224 * (FMA(KP668178637, TF, TG))); R1[WS(rs, 4)] = -(KP1_961570560 * (FMA(KP198912367, Tv, TE))); R1[WS(rs, 2)] = -(KP1_662939224 * (FNMS(KP668178637, TG, TF))); } } } } static const kr2c_desc desc = { 16, "r2cbIII_16", {46, 16, 20, 0}, &GENUS }; void X(codelet_r2cbIII_16) (planner *p) { X(kr2c_register) (p, r2cbIII_16, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cbIII_16 -dft-III -include rdft/scalar/r2cbIII.h */ /* * This function contains 66 FP additions, 32 FP multiplications, * (or, 54 additions, 20 multiplications, 12 fused multiply/add), * 40 stack variables, 9 constants, and 32 memory accesses */ #include "rdft/scalar/r2cbIII.h" static void r2cbIII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); DK(KP390180644, +0.390180644032256535696569736954044481855383236); DK(KP1_111140466, +1.111140466039204449485661627897065748749874382); DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP765366864, +0.765366864730179543456919968060797733522689125); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { E T7, TW, T13, Tj, TD, TK, TP, TH, Te, TX, T12, To, Tt, Tx, TS; E Tw, TT, TY; { E T3, Tf, TC, TV, T6, Tz, Ti, TU; { E T1, T2, TA, TB; T1 = Cr[0]; T2 = Cr[WS(csr, 7)]; T3 = T1 + T2; Tf = T1 - T2; TA = Ci[0]; TB = Ci[WS(csi, 7)]; TC = TA + TB; TV = TB - TA; } { E T4, T5, Tg, Th; T4 = Cr[WS(csr, 4)]; T5 = Cr[WS(csr, 3)]; T6 = T4 + T5; Tz = T4 - T5; Tg = Ci[WS(csi, 4)]; Th = Ci[WS(csi, 3)]; Ti = Tg + Th; TU = Tg - Th; } T7 = T3 + T6; TW = TU + TV; T13 = TV - TU; Tj = Tf - Ti; TD = Tz + TC; TK = Tz - TC; TP = T3 - T6; TH = Tf + Ti; } { E Ta, Tk, Tn, TR, Td, Tp, Ts, TQ; { E T8, T9, Tl, Tm; T8 = Cr[WS(csr, 2)]; T9 = Cr[WS(csr, 5)]; Ta = T8 + T9; Tk = T8 - T9; Tl = Ci[WS(csi, 2)]; Tm = Ci[WS(csi, 5)]; Tn = Tl + Tm; TR = Tl - Tm; } { E Tb, Tc, Tq, Tr; Tb = Cr[WS(csr, 1)]; Tc = Cr[WS(csr, 6)]; Td = Tb + Tc; Tp = Tb - Tc; Tq = Ci[WS(csi, 1)]; Tr = Ci[WS(csi, 6)]; Ts = Tq + Tr; TQ = Tr - Tq; } Te = Ta + Td; TX = Ta - Td; T12 = TR + TQ; To = Tk - Tn; Tt = Tp - Ts; Tx = Tp + Ts; TS = TQ - TR; Tw = Tk + Tn; } R0[0] = KP2_000000000 * (T7 + Te); R0[WS(rs, 4)] = KP2_000000000 * (T13 - T12); TT = TP + TS; TY = TW - TX; R0[WS(rs, 1)] = FMA(KP1_847759065, TT, KP765366864 * TY); R0[WS(rs, 5)] = FNMS(KP765366864, TT, KP1_847759065 * TY); { E T11, T14, TZ, T10; T11 = T7 - Te; T14 = T12 + T13; R0[WS(rs, 2)] = KP1_414213562 * (T11 + T14); R0[WS(rs, 6)] = KP1_414213562 * (T14 - T11); TZ = TP - TS; T10 = TX + TW; R0[WS(rs, 3)] = FMA(KP765366864, TZ, KP1_847759065 * T10); R0[WS(rs, 7)] = FNMS(KP1_847759065, TZ, KP765366864 * T10); } { E TJ, TN, TM, TO, TI, TL; TI = KP707106781 * (Tw + Tx); TJ = TH - TI; TN = TH + TI; TL = KP707106781 * (To - Tt); TM = TK - TL; TO = TL + TK; R1[WS(rs, 1)] = FMA(KP1_662939224, TJ, KP1_111140466 * TM); R1[WS(rs, 7)] = FNMS(KP1_961570560, TN, KP390180644 * TO); R1[WS(rs, 5)] = FNMS(KP1_111140466, TJ, KP1_662939224 * TM); R1[WS(rs, 3)] = FMA(KP390180644, TN, KP1_961570560 * TO); } { E Tv, TF, TE, TG, Tu, Ty; Tu = KP707106781 * (To + Tt); Tv = Tj + Tu; TF = Tj - Tu; Ty = KP707106781 * (Tw - Tx); TE = Ty + TD; TG = Ty - TD; R1[0] = FNMS(KP390180644, TE, KP1_961570560 * Tv); R1[WS(rs, 6)] = FNMS(KP1_662939224, TF, KP1_111140466 * TG); R1[WS(rs, 4)] = -(FMA(KP390180644, Tv, KP1_961570560 * TE)); R1[WS(rs, 2)] = FMA(KP1_111140466, TF, KP1_662939224 * TG); } } } } static const kr2c_desc desc = { 16, "r2cbIII_16", {54, 20, 12, 0}, &GENUS }; void X(codelet_r2cbIII_16) (planner *p) { X(kr2c_register) (p, r2cbIII_16, &desc); } #endif