/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:49 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include rdft/scalar/r2cbIII.h */ /* * This function contains 94 FP additions, 56 FP multiplications, * (or, 58 additions, 20 multiplications, 36 fused multiply/add), * 43 stack variables, 6 constants, and 40 memory accesses */ #include "rdft/scalar/r2cbIII.h" static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { E T1, Tk, T1l, TZ, T8, Tj, TQ, Ts, TV, TI, TT, TU, Ta, Tv, T1i; E T1a, Th, Tu, T11, TD, T16, TL, T14, T15; { E T7, TY, T4, TX; T1 = Cr[WS(csr, 2)]; { E T5, T6, T2, T3; T5 = Cr[WS(csr, 9)]; T6 = Cr[WS(csr, 5)]; T7 = T5 + T6; TY = T5 - T6; T2 = Cr[WS(csr, 6)]; T3 = Cr[WS(csr, 1)]; T4 = T2 + T3; TX = T2 - T3; } Tk = T4 - T7; T1l = FNMS(KP618033988, TX, TY); TZ = FMA(KP618033988, TY, TX); T8 = T4 + T7; Tj = FNMS(KP250000000, T8, T1); } { E Tr, TS, To, TR; TQ = Ci[WS(csi, 2)]; { E Tp, Tq, Tm, Tn; Tp = Ci[WS(csi, 5)]; Tq = Ci[WS(csi, 9)]; Tr = Tp - Tq; TS = Tp + Tq; Tm = Ci[WS(csi, 6)]; Tn = Ci[WS(csi, 1)]; To = Tm + Tn; TR = Tm - Tn; } Ts = FMA(KP618033988, Tr, To); TV = TR + TS; TI = FNMS(KP618033988, To, Tr); TT = TR - TS; TU = FNMS(KP250000000, TT, TQ); } { E Tg, T19, Td, T18; Ta = Cr[WS(csr, 7)]; { E Te, Tf, Tb, Tc; Te = Cr[0]; Tf = Cr[WS(csr, 4)]; Tg = Te + Tf; T19 = Te - Tf; Tb = Cr[WS(csr, 3)]; Tc = Cr[WS(csr, 8)]; Td = Tb + Tc; T18 = Tb - Tc; } Tv = Td - Tg; T1i = FNMS(KP618033988, T18, T19); T1a = FMA(KP618033988, T19, T18); Th = Td + Tg; Tu = FNMS(KP250000000, Th, Ta); } { E TC, T13, Tz, T12; T11 = Ci[WS(csi, 7)]; { E TA, TB, Tx, Ty; TA = Ci[WS(csi, 4)]; TB = Ci[0]; TC = TA - TB; T13 = TB + TA; Tx = Ci[WS(csi, 3)]; Ty = Ci[WS(csi, 8)]; Tz = Tx + Ty; T12 = Tx - Ty; } TD = FMA(KP618033988, TC, Tz); T16 = T12 + T13; TL = FNMS(KP618033988, Tz, TC); T14 = T12 - T13; T15 = FNMS(KP250000000, T14, T11); } { E T9, Ti, T1w, T1t, T1u, T1v; T9 = T1 + T8; Ti = Ta + Th; T1w = T9 - Ti; T1t = TT + TQ; T1u = T14 + T11; T1v = T1t + T1u; R0[0] = KP2_000000000 * (T9 + Ti); R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t); R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w); R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v); } { E TJ, TN, T1m, T1q, TM, TO, T1j, T1r; { E TH, T1k, TK, T1h; TH = FNMS(KP559016994, Tk, Tj); TJ = FNMS(KP951056516, TI, TH); TN = FMA(KP951056516, TI, TH); T1k = FNMS(KP559016994, TV, TU); T1m = FNMS(KP951056516, T1l, T1k); T1q = FMA(KP951056516, T1l, T1k); TK = FNMS(KP559016994, Tv, Tu); TM = FMA(KP951056516, TL, TK); TO = FNMS(KP951056516, TL, TK); T1h = FNMS(KP559016994, T16, T15); T1j = FMA(KP951056516, T1i, T1h); T1r = FNMS(KP951056516, T1i, T1h); } R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM); R0[WS(rs, 6)] = -(KP2_000000000 * (TN + TO)); R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q); R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m); { E T1p, T1s, T1n, T1o; T1p = TM - TJ; T1s = T1q + T1r; R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s); R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s); T1n = TN - TO; T1o = T1m + T1j; R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o); R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o); } } { E Tt, TF, T1b, T1f, TE, TG, T10, T1e; { E Tl, T17, Tw, TW; Tl = FMA(KP559016994, Tk, Tj); Tt = FNMS(KP951056516, Ts, Tl); TF = FMA(KP951056516, Ts, Tl); T17 = FMA(KP559016994, T16, T15); T1b = FNMS(KP951056516, T1a, T17); T1f = FMA(KP951056516, T1a, T17); Tw = FMA(KP559016994, Tv, Tu); TE = FMA(KP951056516, TD, Tw); TG = FNMS(KP951056516, TD, Tw); TW = FMA(KP559016994, TV, TU); T10 = FMA(KP951056516, TZ, TW); T1e = FNMS(KP951056516, TZ, TW); } R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE); R0[WS(rs, 2)] = -(KP2_000000000 * (TF + TG)); R0[WS(rs, 7)] = KP2_000000000 * (T1e - T1f); R0[WS(rs, 3)] = KP2_000000000 * (T10 - T1b); { E T1d, T1g, TP, T1c; T1d = TF - TG; T1g = T1e + T1f; R1[WS(rs, 4)] = KP1_414213562 * (T1d - T1g); R1[WS(rs, 9)] = -(KP1_414213562 * (T1d + T1g)); TP = Tt - TE; T1c = T10 + T1b; R1[0] = KP1_414213562 * (TP - T1c); R1[WS(rs, 5)] = -(KP1_414213562 * (TP + T1c)); } } } } } static const kr2c_desc desc = { 20, "r2cbIII_20", {58, 20, 36, 0}, &GENUS }; void X(codelet_r2cbIII_20) (planner *p) { X(kr2c_register) (p, r2cbIII_20, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include rdft/scalar/r2cbIII.h */ /* * This function contains 94 FP additions, 44 FP multiplications, * (or, 82 additions, 32 multiplications, 12 fused multiply/add), * 43 stack variables, 6 constants, and 40 memory accesses */ #include "rdft/scalar/r2cbIII.h" static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { E T1, Tj, T1k, T13, T8, Tk, T17, Ts, T16, TI, T18, T19, Ta, Tu, T1i; E TS, Th, Tv, TX, TD, TV, TL, TW, TY; { E T7, T12, T4, T11; T1 = Cr[WS(csr, 2)]; { E T5, T6, T2, T3; T5 = Cr[WS(csr, 9)]; T6 = Cr[WS(csr, 5)]; T7 = T5 + T6; T12 = T5 - T6; T2 = Cr[WS(csr, 6)]; T3 = Cr[WS(csr, 1)]; T4 = T2 + T3; T11 = T2 - T3; } Tj = KP559016994 * (T4 - T7); T1k = FNMS(KP951056516, T12, KP587785252 * T11); T13 = FMA(KP951056516, T11, KP587785252 * T12); T8 = T4 + T7; Tk = FNMS(KP250000000, T8, T1); } { E Tr, T15, To, T14; T17 = Ci[WS(csi, 2)]; { E Tp, Tq, Tm, Tn; Tp = Ci[WS(csi, 5)]; Tq = Ci[WS(csi, 9)]; Tr = Tp - Tq; T15 = Tp + Tq; Tm = Ci[WS(csi, 6)]; Tn = Ci[WS(csi, 1)]; To = Tm + Tn; T14 = Tm - Tn; } Ts = FMA(KP951056516, To, KP587785252 * Tr); T16 = KP559016994 * (T14 + T15); TI = FNMS(KP951056516, Tr, KP587785252 * To); T18 = T14 - T15; T19 = FNMS(KP250000000, T18, T17); } { E Tg, TR, Td, TQ; Ta = Cr[WS(csr, 7)]; { E Te, Tf, Tb, Tc; Te = Cr[0]; Tf = Cr[WS(csr, 4)]; Tg = Te + Tf; TR = Te - Tf; Tb = Cr[WS(csr, 3)]; Tc = Cr[WS(csr, 8)]; Td = Tb + Tc; TQ = Tb - Tc; } Tu = KP559016994 * (Td - Tg); T1i = FNMS(KP951056516, TR, KP587785252 * TQ); TS = FMA(KP951056516, TQ, KP587785252 * TR); Th = Td + Tg; Tv = FNMS(KP250000000, Th, Ta); } { E TC, TU, Tz, TT; TX = Ci[WS(csi, 7)]; { E TA, TB, Tx, Ty; TA = Ci[WS(csi, 4)]; TB = Ci[0]; TC = TA - TB; TU = TB + TA; Tx = Ci[WS(csi, 3)]; Ty = Ci[WS(csi, 8)]; Tz = Tx + Ty; TT = Ty - Tx; } TD = FMA(KP951056516, Tz, KP587785252 * TC); TV = KP559016994 * (TT - TU); TL = FNMS(KP587785252, Tz, KP951056516 * TC); TW = TT + TU; TY = FMA(KP250000000, TW, TX); } { E T9, Ti, T1w, T1t, T1u, T1v; T9 = T1 + T8; Ti = Ta + Th; T1w = T9 - Ti; T1t = T18 + T17; T1u = TX - TW; T1v = T1t + T1u; R0[0] = KP2_000000000 * (T9 + Ti); R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t); R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w); R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v); } { E TJ, TO, T1m, T1q, TM, TN, T1j, T1r; { E TH, T1l, TK, T1h; TH = Tk - Tj; TJ = TH + TI; TO = TH - TI; T1l = T19 - T16; T1m = T1k + T1l; T1q = T1l - T1k; TK = Tv - Tu; TM = TK + TL; TN = TL - TK; T1h = TV + TY; T1j = T1h - T1i; T1r = T1i + T1h; } R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM); R0[WS(rs, 6)] = KP2_000000000 * (TN - TO); R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q); R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m); { E T1p, T1s, T1n, T1o; T1p = TM - TJ; T1s = T1q + T1r; R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s); R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s); T1n = TO + TN; T1o = T1m + T1j; R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o); R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o); } } { E Tt, TG, T1b, T1f, TE, TF, T10, T1e; { E Tl, T1a, Tw, TZ; Tl = Tj + Tk; Tt = Tl - Ts; TG = Tl + Ts; T1a = T16 + T19; T1b = T13 + T1a; T1f = T1a - T13; Tw = Tu + Tv; TE = Tw + TD; TF = TD - Tw; TZ = TV - TY; T10 = TS + TZ; T1e = TZ - TS; } R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE); R0[WS(rs, 2)] = KP2_000000000 * (TF - TG); R0[WS(rs, 7)] = KP2_000000000 * (T1f + T1e); R0[WS(rs, 3)] = KP2_000000000 * (T1b + T10); { E T1d, T1g, TP, T1c; T1d = TG + TF; T1g = T1e - T1f; R1[WS(rs, 4)] = KP1_414213562 * (T1d + T1g); R1[WS(rs, 9)] = KP1_414213562 * (T1g - T1d); TP = Tt - TE; T1c = T10 - T1b; R1[0] = KP1_414213562 * (TP + T1c); R1[WS(rs, 5)] = KP1_414213562 * (T1c - TP); } } } } } static const kr2c_desc desc = { 20, "r2cbIII_20", {82, 32, 12, 0}, &GENUS }; void X(codelet_r2cbIII_20) (planner *p) { X(kr2c_register) (p, r2cbIII_20, &desc); } #endif