/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:43 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -name r2cbIII_8 -dft-III -include rdft/scalar/r2cbIII.h */ /* * This function contains 22 FP additions, 12 FP multiplications, * (or, 18 additions, 8 multiplications, 4 fused multiply/add), * 19 stack variables, 4 constants, and 16 memory accesses */ #include "rdft/scalar/r2cbIII.h" static void r2cbIII_8(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(32, rs), MAKE_VOLATILE_STRIDE(32, csr), MAKE_VOLATILE_STRIDE(32, csi)) { E T3, T7, Tf, Tl, T6, Tc, Ta, Tk, Tb, Tg; { E T1, T2, Td, Te; T1 = Cr[0]; T2 = Cr[WS(csr, 3)]; T3 = T1 + T2; T7 = T1 - T2; Td = Ci[0]; Te = Ci[WS(csi, 3)]; Tf = Td + Te; Tl = Te - Td; } { E T4, T5, T8, T9; T4 = Cr[WS(csr, 2)]; T5 = Cr[WS(csr, 1)]; T6 = T4 + T5; Tc = T4 - T5; T8 = Ci[WS(csi, 2)]; T9 = Ci[WS(csi, 1)]; Ta = T8 + T9; Tk = T8 - T9; } R0[0] = KP2_000000000 * (T3 + T6); R0[WS(rs, 2)] = KP2_000000000 * (Tl - Tk); Tb = T7 - Ta; Tg = Tc + Tf; R1[0] = KP1_847759065 * (FNMS(KP414213562, Tg, Tb)); R1[WS(rs, 2)] = -(KP1_847759065 * (FMA(KP414213562, Tb, Tg))); { E Th, Ti, Tj, Tm; Th = Tc - Tf; Ti = T7 + Ta; R1[WS(rs, 1)] = KP1_847759065 * (FMA(KP414213562, Ti, Th)); R1[WS(rs, 3)] = -(KP1_847759065 * (FNMS(KP414213562, Th, Ti))); Tj = T3 - T6; Tm = Tk + Tl; R0[WS(rs, 1)] = KP1_414213562 * (Tj + Tm); R0[WS(rs, 3)] = KP1_414213562 * (Tm - Tj); } } } } static const kr2c_desc desc = { 8, "r2cbIII_8", {18, 8, 4, 0}, &GENUS }; void X(codelet_r2cbIII_8) (planner *p) { X(kr2c_register) (p, r2cbIII_8, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -name r2cbIII_8 -dft-III -include rdft/scalar/r2cbIII.h */ /* * This function contains 22 FP additions, 12 FP multiplications, * (or, 18 additions, 8 multiplications, 4 fused multiply/add), * 19 stack variables, 4 constants, and 16 memory accesses */ #include "rdft/scalar/r2cbIII.h" static void r2cbIII_8(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP765366864, +0.765366864730179543456919968060797733522689125); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(32, rs), MAKE_VOLATILE_STRIDE(32, csr), MAKE_VOLATILE_STRIDE(32, csi)) { E T3, T7, Tf, Tl, T6, Tc, Ta, Tk, Tb, Tg; { E T1, T2, Td, Te; T1 = Cr[0]; T2 = Cr[WS(csr, 3)]; T3 = T1 + T2; T7 = T1 - T2; Td = Ci[0]; Te = Ci[WS(csi, 3)]; Tf = Td + Te; Tl = Te - Td; } { E T4, T5, T8, T9; T4 = Cr[WS(csr, 2)]; T5 = Cr[WS(csr, 1)]; T6 = T4 + T5; Tc = T4 - T5; T8 = Ci[WS(csi, 2)]; T9 = Ci[WS(csi, 1)]; Ta = T8 + T9; Tk = T8 - T9; } R0[0] = KP2_000000000 * (T3 + T6); R0[WS(rs, 2)] = KP2_000000000 * (Tl - Tk); Tb = T7 - Ta; Tg = Tc + Tf; R1[0] = FNMS(KP765366864, Tg, KP1_847759065 * Tb); R1[WS(rs, 2)] = -(FMA(KP765366864, Tb, KP1_847759065 * Tg)); { E Th, Ti, Tj, Tm; Th = T7 + Ta; Ti = Tc - Tf; R1[WS(rs, 1)] = FMA(KP765366864, Th, KP1_847759065 * Ti); R1[WS(rs, 3)] = FNMS(KP1_847759065, Th, KP765366864 * Ti); Tj = T3 - T6; Tm = Tk + Tl; R0[WS(rs, 1)] = KP1_414213562 * (Tj + Tm); R0[WS(rs, 3)] = KP1_414213562 * (Tm - Tj); } } } } static const kr2c_desc desc = { 8, "r2cbIII_8", {18, 8, 4, 0}, &GENUS }; void X(codelet_r2cbIII_8) (planner *p) { X(kr2c_register) (p, r2cbIII_8, &desc); } #endif