/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:28 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */ /* * This function contains 34 FP additions, 20 FP multiplications, * (or, 14 additions, 0 multiplications, 20 fused multiply/add), * 26 stack variables, 5 constants, and 20 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { E T3, Tb, Tn, Tu, Tk, Tv, Ta, Ts, Te, Tg, Ti, Tj; { E T1, T2, Tl, Tm; T1 = Cr[0]; T2 = Cr[WS(csr, 5)]; T3 = T1 - T2; Tb = T1 + T2; Tl = Ci[WS(csi, 2)]; Tm = Ci[WS(csi, 3)]; Tn = Tl - Tm; Tu = Tl + Tm; } Ti = Ci[WS(csi, 4)]; Tj = Ci[WS(csi, 1)]; Tk = Ti - Tj; Tv = Ti + Tj; { E T6, Tc, T9, Td; { E T4, T5, T7, T8; T4 = Cr[WS(csr, 2)]; T5 = Cr[WS(csr, 3)]; T6 = T4 - T5; Tc = T4 + T5; T7 = Cr[WS(csr, 4)]; T8 = Cr[WS(csr, 1)]; T9 = T7 - T8; Td = T7 + T8; } Ta = T6 + T9; Ts = T6 - T9; Te = Tc + Td; Tg = Tc - Td; } R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3); R0[0] = FMA(KP2_000000000, Te, Tb); { E To, Tq, Th, Tp, Tf; To = FNMS(KP618033988, Tn, Tk); Tq = FMA(KP618033988, Tk, Tn); Tf = FNMS(KP500000000, Te, Tb); Th = FNMS(KP1_118033988, Tg, Tf); Tp = FMA(KP1_118033988, Tg, Tf); R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th); R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp); R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th); R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp); } { E Tw, Ty, Tt, Tx, Tr; Tw = FMA(KP618033988, Tv, Tu); Ty = FNMS(KP618033988, Tu, Tv); Tr = FNMS(KP500000000, Ta, T3); Tt = FMA(KP1_118033988, Ts, Tr); Tx = FNMS(KP1_118033988, Ts, Tr); R1[0] = FNMS(KP1_902113032, Tw, Tt); R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx); R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt); R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx); } } } } static const kr2c_desc desc = { 10, "r2cb_10", {14, 0, 20, 0}, &GENUS }; void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include rdft/scalar/r2cb.h */ /* * This function contains 34 FP additions, 14 FP multiplications, * (or, 26 additions, 6 multiplications, 8 fused multiply/add), * 26 stack variables, 5 constants, and 20 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj; { E T1, T2, Tl, Tm; T1 = Cr[0]; T2 = Cr[WS(csr, 5)]; T3 = T1 - T2; Tb = T1 + T2; Tl = Ci[WS(csi, 4)]; Tm = Ci[WS(csi, 1)]; Tn = Tl - Tm; Tv = Tl + Tm; } Ti = Ci[WS(csi, 2)]; Tj = Ci[WS(csi, 3)]; Tk = Ti - Tj; Tu = Ti + Tj; { E T6, Tc, T9, Td; { E T4, T5, T7, T8; T4 = Cr[WS(csr, 2)]; T5 = Cr[WS(csr, 3)]; T6 = T4 - T5; Tc = T4 + T5; T7 = Cr[WS(csr, 4)]; T8 = Cr[WS(csr, 1)]; T9 = T7 - T8; Td = T7 + T8; } Ta = T6 + T9; Ts = KP1_118033988 * (T6 - T9); Te = Tc + Td; Tg = KP1_118033988 * (Tc - Td); } R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3); R0[0] = FMA(KP2_000000000, Te, Tb); { E To, Tq, Th, Tp, Tf; To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk); Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn); Tf = FNMS(KP500000000, Te, Tb); Th = Tf - Tg; Tp = Tg + Tf; R0[WS(rs, 1)] = Th - To; R0[WS(rs, 2)] = Tp + Tq; R0[WS(rs, 4)] = Th + To; R0[WS(rs, 3)] = Tp - Tq; } { E Tw, Ty, Tt, Tx, Tr; Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu); Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv); Tr = FNMS(KP500000000, Ta, T3); Tt = Tr - Ts; Tx = Ts + Tr; R1[WS(rs, 3)] = Tt - Tw; R1[WS(rs, 4)] = Tx + Ty; R1[WS(rs, 1)] = Tt + Tw; R1[0] = Tx - Ty; } } } } static const kr2c_desc desc = { 10, "r2cb_10", {26, 6, 8, 0}, &GENUS }; void X(codelet_r2cb_10) (planner *p) { X(kr2c_register) (p, r2cb_10, &desc); } #endif