/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:29 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cb_16 -include rdft/scalar/r2cb.h */ /* * This function contains 58 FP additions, 32 FP multiplications, * (or, 26 additions, 0 multiplications, 32 fused multiply/add), * 31 stack variables, 4 constants, and 32 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { E T5, TL, Tj, TD, T8, TM, To, TE, Tc, TP, Tf, TQ, Tu, Tz, TR; E TO, TH, TG; { E T4, Ti, T3, Th, T1, T2; T4 = Cr[WS(csr, 4)]; Ti = Ci[WS(csi, 4)]; T1 = Cr[0]; T2 = Cr[WS(csr, 8)]; T3 = T1 + T2; Th = T1 - T2; T5 = FMA(KP2_000000000, T4, T3); TL = FNMS(KP2_000000000, T4, T3); Tj = FNMS(KP2_000000000, Ti, Th); TD = FMA(KP2_000000000, Ti, Th); } { E T6, T7, Tk, Tl, Tm, Tn; T6 = Cr[WS(csr, 2)]; T7 = Cr[WS(csr, 6)]; Tk = T6 - T7; Tl = Ci[WS(csi, 2)]; Tm = Ci[WS(csi, 6)]; Tn = Tl + Tm; T8 = T6 + T7; TM = Tl - Tm; To = Tk - Tn; TE = Tk + Tn; } { E Tq, Ty, Tv, Tt; { E Ta, Tb, Tw, Tx; Ta = Cr[WS(csr, 1)]; Tb = Cr[WS(csr, 7)]; Tc = Ta + Tb; Tq = Ta - Tb; Tw = Ci[WS(csi, 1)]; Tx = Ci[WS(csi, 7)]; Ty = Tw + Tx; TP = Tw - Tx; } { E Td, Te, Tr, Ts; Td = Cr[WS(csr, 5)]; Te = Cr[WS(csr, 3)]; Tf = Td + Te; Tv = Td - Te; Tr = Ci[WS(csi, 5)]; Ts = Ci[WS(csi, 3)]; Tt = Tr + Ts; TQ = Tr - Ts; } Tu = Tq - Tt; Tz = Tv + Ty; TR = TP - TQ; TO = Tc - Tf; TH = Tq + Tt; TG = Ty - Tv; } { E T9, Tg, TT, TU; T9 = FMA(KP2_000000000, T8, T5); Tg = Tc + Tf; R0[WS(rs, 4)] = FNMS(KP2_000000000, Tg, T9); R0[0] = FMA(KP2_000000000, Tg, T9); TT = FMA(KP2_000000000, TM, TL); TU = TO + TR; R0[WS(rs, 3)] = FNMS(KP1_414213562, TU, TT); R0[WS(rs, 7)] = FMA(KP1_414213562, TU, TT); } { E TV, TW, Tp, TA; TV = FNMS(KP2_000000000, T8, T5); TW = TQ + TP; R0[WS(rs, 2)] = FNMS(KP2_000000000, TW, TV); R0[WS(rs, 6)] = FMA(KP2_000000000, TW, TV); Tp = FMA(KP1_414213562, To, Tj); TA = FNMS(KP414213562, Tz, Tu); R1[WS(rs, 4)] = FNMS(KP1_847759065, TA, Tp); R1[0] = FMA(KP1_847759065, TA, Tp); } { E TB, TC, TJ, TK; TB = FNMS(KP1_414213562, To, Tj); TC = FMA(KP414213562, Tu, Tz); R1[WS(rs, 2)] = FNMS(KP1_847759065, TC, TB); R1[WS(rs, 6)] = FMA(KP1_847759065, TC, TB); TJ = FMA(KP1_414213562, TE, TD); TK = FMA(KP414213562, TG, TH); R1[WS(rs, 3)] = FNMS(KP1_847759065, TK, TJ); R1[WS(rs, 7)] = FMA(KP1_847759065, TK, TJ); } { E TN, TS, TF, TI; TN = FNMS(KP2_000000000, TM, TL); TS = TO - TR; R0[WS(rs, 5)] = FNMS(KP1_414213562, TS, TN); R0[WS(rs, 1)] = FMA(KP1_414213562, TS, TN); TF = FNMS(KP1_414213562, TE, TD); TI = FNMS(KP414213562, TH, TG); R1[WS(rs, 1)] = FNMS(KP1_847759065, TI, TF); R1[WS(rs, 5)] = FMA(KP1_847759065, TI, TF); } } } } static const kr2c_desc desc = { 16, "r2cb_16", {26, 0, 32, 0}, &GENUS }; void X(codelet_r2cb_16) (planner *p) { X(kr2c_register) (p, r2cb_16, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cb_16 -include rdft/scalar/r2cb.h */ /* * This function contains 58 FP additions, 18 FP multiplications, * (or, 54 additions, 14 multiplications, 4 fused multiply/add), * 31 stack variables, 4 constants, and 32 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP765366864, +0.765366864730179543456919968060797733522689125); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { E T9, TS, Tl, TG, T6, TR, Ti, TD, Td, Tq, Tg, Tt, Tn, Tu, TV; E TU, TN, TK; { E T7, T8, TE, Tj, Tk, TF; T7 = Cr[WS(csr, 2)]; T8 = Cr[WS(csr, 6)]; TE = T7 - T8; Tj = Ci[WS(csi, 2)]; Tk = Ci[WS(csi, 6)]; TF = Tj + Tk; T9 = KP2_000000000 * (T7 + T8); TS = KP1_414213562 * (TE + TF); Tl = KP2_000000000 * (Tj - Tk); TG = KP1_414213562 * (TE - TF); } { E T5, TC, T3, TA; { E T4, TB, T1, T2; T4 = Cr[WS(csr, 4)]; T5 = KP2_000000000 * T4; TB = Ci[WS(csi, 4)]; TC = KP2_000000000 * TB; T1 = Cr[0]; T2 = Cr[WS(csr, 8)]; T3 = T1 + T2; TA = T1 - T2; } T6 = T3 + T5; TR = TA + TC; Ti = T3 - T5; TD = TA - TC; } { E TI, TM, TL, TJ; { E Tb, Tc, To, Tp; Tb = Cr[WS(csr, 1)]; Tc = Cr[WS(csr, 7)]; Td = Tb + Tc; TI = Tb - Tc; To = Ci[WS(csi, 1)]; Tp = Ci[WS(csi, 7)]; Tq = To - Tp; TM = To + Tp; } { E Te, Tf, Tr, Ts; Te = Cr[WS(csr, 5)]; Tf = Cr[WS(csr, 3)]; Tg = Te + Tf; TL = Te - Tf; Tr = Ci[WS(csi, 5)]; Ts = Ci[WS(csi, 3)]; Tt = Tr - Ts; TJ = Tr + Ts; } Tn = Td - Tg; Tu = Tq - Tt; TV = TM - TL; TU = TI + TJ; TN = TL + TM; TK = TI - TJ; } { E Ta, Th, TT, TW; Ta = T6 + T9; Th = KP2_000000000 * (Td + Tg); R0[WS(rs, 4)] = Ta - Th; R0[0] = Ta + Th; TT = TR - TS; TW = FNMS(KP1_847759065, TV, KP765366864 * TU); R1[WS(rs, 5)] = TT - TW; R1[WS(rs, 1)] = TT + TW; } { E TX, TY, Tm, Tv; TX = TR + TS; TY = FMA(KP1_847759065, TU, KP765366864 * TV); R1[WS(rs, 3)] = TX - TY; R1[WS(rs, 7)] = TX + TY; Tm = Ti - Tl; Tv = KP1_414213562 * (Tn - Tu); R0[WS(rs, 5)] = Tm - Tv; R0[WS(rs, 1)] = Tm + Tv; } { E Tw, Tx, TH, TO; Tw = Ti + Tl; Tx = KP1_414213562 * (Tn + Tu); R0[WS(rs, 3)] = Tw - Tx; R0[WS(rs, 7)] = Tw + Tx; TH = TD + TG; TO = FNMS(KP765366864, TN, KP1_847759065 * TK); R1[WS(rs, 4)] = TH - TO; R1[0] = TH + TO; } { E TP, TQ, Ty, Tz; TP = TD - TG; TQ = FMA(KP765366864, TK, KP1_847759065 * TN); R1[WS(rs, 2)] = TP - TQ; R1[WS(rs, 6)] = TP + TQ; Ty = T6 - T9; Tz = KP2_000000000 * (Tt + Tq); R0[WS(rs, 2)] = Ty - Tz; R0[WS(rs, 6)] = Ty + Tz; } } } } static const kr2c_desc desc = { 16, "r2cb_16", {54, 14, 4, 0}, &GENUS }; void X(codelet_r2cb_16) (planner *p) { X(kr2c_register) (p, r2cb_16, &desc); } #endif