/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Thu May 24 08:07:10 EDT 2018 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hc2cf2_20 -include rdft/scalar/hc2cf.h */ /* * This function contains 276 FP additions, 198 FP multiplications, * (or, 136 additions, 58 multiplications, 140 fused multiply/add), * 95 stack variables, 4 constants, and 80 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cf2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); { INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { E T2, Th, Tf, T6, T5, Ti, Tl, T1n, T3, Tt, Tv, T7, T17, T1L, T24; E Tb, T13, T1P, T21, T1b, T1D, T1A, T1H, T1f, TA, Tw, Tq, Tm, TK, T1S; E TO, T1p, T1q, T1u, T2n, T2k, T2h, T2d; { E Tk, Ta, T1e, T4, T1a, Tj, T12, T1G, T16, T1K, Tg, Tz; T2 = W[0]; Th = W[3]; Tf = W[2]; Tg = T2 * Tf; Tk = T2 * Th; T6 = W[5]; Ta = T2 * T6; T1e = Tf * T6; T5 = W[1]; Ti = FNMS(T5, Th, Tg); Tl = FMA(T5, Tf, Tk); T1n = FMA(T5, Th, Tg); T3 = W[4]; T4 = T2 * T3; T1a = Tf * T3; Tj = Ti * T3; Tt = W[6]; T12 = Tf * Tt; T1G = T2 * Tt; Tv = W[7]; T16 = Tf * Tv; T1K = T2 * Tv; T7 = FNMS(T5, T6, T4); T17 = FNMS(Th, Tt, T16); T1L = FNMS(T5, Tt, T1K); T24 = FMA(Th, T3, T1e); Tb = FMA(T5, T3, Ta); T13 = FMA(Th, Tv, T12); T1P = FNMS(Tl, T6, Tj); T21 = FNMS(Th, T6, T1a); T1b = FMA(Th, T6, T1a); T1D = FNMS(T5, T3, Ta); T1A = FMA(T5, T6, T4); T1H = FMA(T5, Tv, T1G); T1f = FNMS(Th, T3, T1e); Tz = Ti * Tv; TA = FNMS(Tl, Tt, Tz); { E Tu, Tp, TJ, TN; Tu = Ti * Tt; Tw = FMA(Tl, Tv, Tu); Tp = Ti * T6; Tq = FNMS(Tl, T3, Tp); Tm = FMA(Tl, T6, Tj); TJ = Tm * Tt; TN = Tm * Tv; TK = FMA(Tq, Tv, TJ); T1S = FMA(Tl, T3, Tp); TO = FNMS(Tq, Tt, TN); { E T1o, T2g, T1t, T2c; T1o = T1n * T3; T2g = T1n * Tv; T1t = T1n * T6; T2c = T1n * Tt; T1p = FNMS(T5, Tf, Tk); T1q = FNMS(T1p, T6, T1o); T1u = FMA(T1p, T3, T1t); T2n = FNMS(T1p, T3, T1t); T2k = FMA(T1p, T6, T1o); T2h = FNMS(T1p, Tt, T2g); T2d = FMA(T1p, Tv, T2c); } } } { E Te, T2C, T4L, T57, TD, T58, T2H, T4H, T11, T2v, T4d, T4z, T2P, T3P, T3J; E T3Z, T2r, T2z, T4n, T4v, T3b, T3T, T3n, T43, T20, T2y, T4k, T4w, T34, T3S; E T3u, T42, T1y, T2w, T4g, T4y, T2W, T3Q, T3C, T40; { E T1, T4K, T8, T9, Tc, T4I, Td, T4J; T1 = Rp[0]; T4K = Rm[0]; T8 = Rp[WS(rs, 5)]; T9 = T7 * T8; Tc = Rm[WS(rs, 5)]; T4I = T7 * Tc; Td = FMA(Tb, Tc, T9); Te = T1 + Td; T2C = T1 - Td; T4J = FNMS(Tb, T8, T4I); T4L = T4J + T4K; T57 = T4K - T4J; } { E Tn, To, Tr, T2D, Tx, Ty, TB, T2F; Tn = Ip[WS(rs, 2)]; To = Tm * Tn; Tr = Im[WS(rs, 2)]; T2D = Tm * Tr; Tx = Ip[WS(rs, 7)]; Ty = Tw * Tx; TB = Im[WS(rs, 7)]; T2F = Tw * TB; { E Ts, TC, T2E, T2G; Ts = FMA(Tq, Tr, To); TC = FMA(TA, TB, Ty); TD = Ts + TC; T58 = Ts - TC; T2E = FNMS(Tq, Tn, T2D); T2G = FNMS(TA, Tx, T2F); T2H = T2E - T2G; T4H = T2E + T2G; } } { E TI, T3F, TZ, T2N, TQ, T3H, TV, T2L; { E TF, TG, TH, T3E; TF = Rp[WS(rs, 2)]; TG = Ti * TF; TH = Rm[WS(rs, 2)]; T3E = Ti * TH; TI = FMA(Tl, TH, TG); T3F = FNMS(Tl, TF, T3E); } { E TW, TX, TY, T2M; TW = Ip[WS(rs, 9)]; TX = Tt * TW; TY = Im[WS(rs, 9)]; T2M = Tt * TY; TZ = FMA(Tv, TY, TX); T2N = FNMS(Tv, TW, T2M); } { E TL, TM, TP, T3G; TL = Rp[WS(rs, 7)]; TM = TK * TL; TP = Rm[WS(rs, 7)]; T3G = TK * TP; TQ = FMA(TO, TP, TM); T3H = FNMS(TO, TL, T3G); } { E TS, TT, TU, T2K; TS = Ip[WS(rs, 4)]; TT = T3 * TS; TU = Im[WS(rs, 4)]; T2K = T3 * TU; TV = FMA(T6, TU, TT); T2L = FNMS(T6, TS, T2K); } { E TR, T10, T4b, T4c; TR = TI + TQ; T10 = TV + TZ; T11 = TR - T10; T2v = TR + T10; T4b = T3F + T3H; T4c = T2L + T2N; T4d = T4b + T4c; T4z = T4c - T4b; } { E T2J, T2O, T3D, T3I; T2J = TI - TQ; T2O = T2L - T2N; T2P = T2J - T2O; T3P = T2J + T2O; T3D = TZ - TV; T3I = T3F - T3H; T3J = T3D - T3I; T3Z = T3I + T3D; } } { E T26, T3j, T2p, T39, T2a, T3l, T2j, T37; { E T22, T23, T25, T3i; T22 = Rp[WS(rs, 6)]; T23 = T21 * T22; T25 = Rm[WS(rs, 6)]; T3i = T21 * T25; T26 = FMA(T24, T25, T23); T3j = FNMS(T24, T22, T3i); } { E T2l, T2m, T2o, T38; T2l = Ip[WS(rs, 3)]; T2m = T2k * T2l; T2o = Im[WS(rs, 3)]; T38 = T2k * T2o; T2p = FMA(T2n, T2o, T2m); T39 = FNMS(T2n, T2l, T38); } { E T27, T28, T29, T3k; T27 = Rp[WS(rs, 1)]; T28 = T1n * T27; T29 = Rm[WS(rs, 1)]; T3k = T1n * T29; T2a = FMA(T1p, T29, T28); T3l = FNMS(T1p, T27, T3k); } { E T2e, T2f, T2i, T36; T2e = Ip[WS(rs, 8)]; T2f = T2d * T2e; T2i = Im[WS(rs, 8)]; T36 = T2d * T2i; T2j = FMA(T2h, T2i, T2f); T37 = FNMS(T2h, T2e, T36); } { E T2b, T2q, T4l, T4m; T2b = T26 + T2a; T2q = T2j + T2p; T2r = T2b - T2q; T2z = T2b + T2q; T4l = T3j + T3l; T4m = T37 + T39; T4n = T4l + T4m; T4v = T4m - T4l; } { E T35, T3a, T3h, T3m; T35 = T26 - T2a; T3a = T37 - T39; T3b = T35 - T3a; T3T = T35 + T3a; T3h = T2p - T2j; T3m = T3j - T3l; T3n = T3h - T3m; T43 = T3m + T3h; } } { E T1F, T3q, T1Y, T32, T1N, T3s, T1U, T30; { E T1B, T1C, T1E, T3p; T1B = Rp[WS(rs, 4)]; T1C = T1A * T1B; T1E = Rm[WS(rs, 4)]; T3p = T1A * T1E; T1F = FMA(T1D, T1E, T1C); T3q = FNMS(T1D, T1B, T3p); } { E T1V, T1W, T1X, T31; T1V = Ip[WS(rs, 1)]; T1W = Tf * T1V; T1X = Im[WS(rs, 1)]; T31 = Tf * T1X; T1Y = FMA(Th, T1X, T1W); T32 = FNMS(Th, T1V, T31); } { E T1I, T1J, T1M, T3r; T1I = Rp[WS(rs, 9)]; T1J = T1H * T1I; T1M = Rm[WS(rs, 9)]; T3r = T1H * T1M; T1N = FMA(T1L, T1M, T1J); T3s = FNMS(T1L, T1I, T3r); } { E T1Q, T1R, T1T, T2Z; T1Q = Ip[WS(rs, 6)]; T1R = T1P * T1Q; T1T = Im[WS(rs, 6)]; T2Z = T1P * T1T; T1U = FMA(T1S, T1T, T1R); T30 = FNMS(T1S, T1Q, T2Z); } { E T1O, T1Z, T4i, T4j; T1O = T1F + T1N; T1Z = T1U + T1Y; T20 = T1O - T1Z; T2y = T1O + T1Z; T4i = T3q + T3s; T4j = T30 + T32; T4k = T4i + T4j; T4w = T4j - T4i; } { E T2Y, T33, T3o, T3t; T2Y = T1F - T1N; T33 = T30 - T32; T34 = T2Y - T33; T3S = T2Y + T33; T3o = T1Y - T1U; T3t = T3q - T3s; T3u = T3o - T3t; T42 = T3t + T3o; } } { E T19, T3y, T1w, T2U, T1h, T3A, T1m, T2S; { E T14, T15, T18, T3x; T14 = Rp[WS(rs, 8)]; T15 = T13 * T14; T18 = Rm[WS(rs, 8)]; T3x = T13 * T18; T19 = FMA(T17, T18, T15); T3y = FNMS(T17, T14, T3x); } { E T1r, T1s, T1v, T2T; T1r = Ip[WS(rs, 5)]; T1s = T1q * T1r; T1v = Im[WS(rs, 5)]; T2T = T1q * T1v; T1w = FMA(T1u, T1v, T1s); T2U = FNMS(T1u, T1r, T2T); } { E T1c, T1d, T1g, T3z; T1c = Rp[WS(rs, 3)]; T1d = T1b * T1c; T1g = Rm[WS(rs, 3)]; T3z = T1b * T1g; T1h = FMA(T1f, T1g, T1d); T3A = FNMS(T1f, T1c, T3z); } { E T1j, T1k, T1l, T2R; T1j = Ip[0]; T1k = T2 * T1j; T1l = Im[0]; T2R = T2 * T1l; T1m = FMA(T5, T1l, T1k); T2S = FNMS(T5, T1j, T2R); } { E T1i, T1x, T4e, T4f; T1i = T19 + T1h; T1x = T1m + T1w; T1y = T1i - T1x; T2w = T1i + T1x; T4e = T3y + T3A; T4f = T2S + T2U; T4g = T4e + T4f; T4y = T4f - T4e; } { E T2Q, T2V, T3w, T3B; T2Q = T19 - T1h; T2V = T2S - T2U; T2W = T2Q - T2V; T3Q = T2Q + T2V; T3w = T1w - T1m; T3B = T3y - T3A; T3C = T3w - T3B; T40 = T3B + T3w; } } { E T4B, T4D, TE, T2t, T4s, T4t, T4C, T4u; { E T4x, T4A, T1z, T2s; T4x = T4v - T4w; T4A = T4y - T4z; T4B = FNMS(KP618033988, T4A, T4x); T4D = FMA(KP618033988, T4x, T4A); TE = Te - TD; T1z = T11 + T1y; T2s = T20 + T2r; T2t = T1z + T2s; T4s = FNMS(KP250000000, T2t, TE); T4t = T1z - T2s; } Rm[WS(rs, 9)] = TE + T2t; T4C = FMA(KP559016994, T4t, T4s); Rm[WS(rs, 5)] = FNMS(KP951056516, T4D, T4C); Rp[WS(rs, 6)] = FMA(KP951056516, T4D, T4C); T4u = FNMS(KP559016994, T4t, T4s); Rp[WS(rs, 2)] = FNMS(KP951056516, T4B, T4u); Rm[WS(rs, 1)] = FMA(KP951056516, T4B, T4u); } { E T54, T56, T4Y, T4X, T4Z, T50, T55, T51; { E T52, T53, T4V, T4W; T52 = T20 - T2r; T53 = T1y - T11; T54 = FMA(KP618033988, T53, T52); T56 = FNMS(KP618033988, T52, T53); T4Y = T4L - T4H; T4V = T4z + T4y; T4W = T4w + T4v; T4X = T4V + T4W; T4Z = FMA(KP250000000, T4X, T4Y); T50 = T4W - T4V; } Im[WS(rs, 9)] = T4X - T4Y; T55 = FMA(KP559016994, T50, T4Z); Im[WS(rs, 5)] = FMS(KP951056516, T56, T55); Ip[WS(rs, 6)] = FMA(KP951056516, T56, T55); T51 = FNMS(KP559016994, T50, T4Z); Im[WS(rs, 1)] = FMS(KP951056516, T54, T51); Ip[WS(rs, 2)] = FMA(KP951056516, T54, T51); } { E T4p, T4r, T2u, T2B, T48, T49, T4q, T4a; { E T4h, T4o, T2x, T2A; T4h = T4d - T4g; T4o = T4k - T4n; T4p = FMA(KP618033988, T4o, T4h); T4r = FNMS(KP618033988, T4h, T4o); T2u = Te + TD; T2x = T2v + T2w; T2A = T2y + T2z; T2B = T2x + T2A; T48 = FNMS(KP250000000, T2B, T2u); T49 = T2x - T2A; } Rp[0] = T2u + T2B; T4q = FNMS(KP559016994, T49, T48); Rm[WS(rs, 7)] = FNMS(KP951056516, T4r, T4q); Rp[WS(rs, 8)] = FMA(KP951056516, T4r, T4q); T4a = FMA(KP559016994, T49, T48); Rp[WS(rs, 4)] = FNMS(KP951056516, T4p, T4a); Rm[WS(rs, 3)] = FMA(KP951056516, T4p, T4a); } { E T4S, T4U, T4M, T4G, T4N, T4O, T4T, T4P; { E T4Q, T4R, T4E, T4F; T4Q = T2v - T2w; T4R = T2z - T2y; T4S = FNMS(KP618033988, T4R, T4Q); T4U = FMA(KP618033988, T4Q, T4R); T4M = T4H + T4L; T4E = T4d + T4g; T4F = T4k + T4n; T4G = T4E + T4F; T4N = FNMS(KP250000000, T4G, T4M); T4O = T4E - T4F; } Ip[0] = T4G + T4M; T4T = FNMS(KP559016994, T4O, T4N); Im[WS(rs, 7)] = FMS(KP951056516, T4U, T4T); Ip[WS(rs, 8)] = FMA(KP951056516, T4U, T4T); T4P = FMA(KP559016994, T4O, T4N); Im[WS(rs, 3)] = FMS(KP951056516, T4S, T4P); Ip[WS(rs, 4)] = FMA(KP951056516, T4S, T4P); } { E T3L, T3N, T2I, T3d, T3e, T3f, T3M, T3g; { E T3v, T3K, T2X, T3c; T3v = T3n - T3u; T3K = T3C - T3J; T3L = FNMS(KP618033988, T3K, T3v); T3N = FMA(KP618033988, T3v, T3K); T2I = T2C - T2H; T2X = T2P + T2W; T3c = T34 + T3b; T3d = T2X + T3c; T3e = FNMS(KP250000000, T3d, T2I); T3f = T2X - T3c; } Rm[WS(rs, 4)] = T2I + T3d; T3M = FMA(KP559016994, T3f, T3e); Rm[WS(rs, 8)] = FMA(KP951056516, T3N, T3M); Rm[0] = FNMS(KP951056516, T3N, T3M); T3g = FNMS(KP559016994, T3f, T3e); Rp[WS(rs, 3)] = FMA(KP951056516, T3L, T3g); Rp[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g); } { E T5u, T5w, T5o, T5n, T5p, T5q, T5v, T5r; { E T5s, T5t, T5l, T5m; T5s = T2P - T2W; T5t = T34 - T3b; T5u = FMA(KP618033988, T5t, T5s); T5w = FNMS(KP618033988, T5s, T5t); T5o = T58 + T57; T5l = T3J + T3C; T5m = T3u + T3n; T5n = T5l + T5m; T5p = FMA(KP250000000, T5n, T5o); T5q = T5l - T5m; } Im[WS(rs, 4)] = T5n - T5o; T5v = FMA(KP559016994, T5q, T5p); Ip[WS(rs, 3)] = FNMS(KP951056516, T5w, T5v); Ip[WS(rs, 7)] = FMA(KP951056516, T5w, T5v); T5r = FNMS(KP559016994, T5q, T5p); Im[WS(rs, 8)] = FMS(KP951056516, T5u, T5r); Im[0] = -(FMA(KP951056516, T5u, T5r)); } { E T45, T47, T3O, T3V, T3W, T3X, T46, T3Y; { E T41, T44, T3R, T3U; T41 = T3Z - T40; T44 = T42 - T43; T45 = FMA(KP618033988, T44, T41); T47 = FNMS(KP618033988, T41, T44); T3O = T2C + T2H; T3R = T3P + T3Q; T3U = T3S + T3T; T3V = T3R + T3U; T3W = FNMS(KP250000000, T3V, T3O); T3X = T3R - T3U; } Rp[WS(rs, 5)] = T3O + T3V; T46 = FNMS(KP559016994, T3X, T3W); Rm[WS(rs, 6)] = FMA(KP951056516, T47, T46); Rm[WS(rs, 2)] = FNMS(KP951056516, T47, T46); T3Y = FMA(KP559016994, T3X, T3W); Rp[WS(rs, 1)] = FMA(KP951056516, T45, T3Y); Rp[WS(rs, 9)] = FNMS(KP951056516, T45, T3Y); } { E T5i, T5k, T59, T5c, T5d, T5e, T5j, T5f; { E T5g, T5h, T5a, T5b; T5g = T3S - T3T; T5h = T3P - T3Q; T5i = FNMS(KP618033988, T5h, T5g); T5k = FMA(KP618033988, T5g, T5h); T59 = T57 - T58; T5a = T3Z + T40; T5b = T42 + T43; T5c = T5a + T5b; T5d = FNMS(KP250000000, T5c, T59); T5e = T5a - T5b; } Ip[WS(rs, 5)] = T5c + T59; T5j = FMA(KP559016994, T5e, T5d); Ip[WS(rs, 1)] = FNMS(KP951056516, T5k, T5j); Ip[WS(rs, 9)] = FMA(KP951056516, T5k, T5j); T5f = FNMS(KP559016994, T5e, T5d); Im[WS(rs, 6)] = FMS(KP951056516, T5i, T5f); Im[WS(rs, 2)] = -(FMA(KP951056516, T5i, T5f)); } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 19}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 20, "hc2cf2_20", twinstr, &GENUS, {136, 58, 140, 0} }; void X(codelet_hc2cf2_20) (planner *p) { X(khc2c_register) (p, hc2cf2_20, &desc, HC2C_VIA_RDFT); } #else /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hc2cf2_20 -include rdft/scalar/hc2cf.h */ /* * This function contains 276 FP additions, 164 FP multiplications, * (or, 204 additions, 92 multiplications, 72 fused multiply/add), * 123 stack variables, 4 constants, and 80 memory accesses */ #include "rdft/scalar/hc2cf.h" static void hc2cf2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) { DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); { INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O; E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ; E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX; { E T7, T16, Ta, T13, T4, T17, Tb, T12; { E Th, Tn, Tj, Tm; T2 = W[0]; T5 = W[1]; Tg = W[2]; Ti = W[3]; Th = T2 * Tg; Tn = T5 * Tg; Tj = T5 * Ti; Tm = T2 * Ti; Tk = Th - Tj; To = Tm + Tn; T1h = Tm - Tn; T1f = Th + Tj; T6 = W[5]; T7 = T5 * T6; T16 = Tg * T6; Ta = T2 * T6; T13 = Ti * T6; T3 = W[4]; T4 = T2 * T3; T17 = Ti * T3; Tb = T5 * T3; T12 = Tg * T3; } T8 = T4 - T7; T14 = T12 + T13; T1Q = T16 + T17; Tc = Ta + Tb; T1O = T12 - T13; T1v = Ta - Tb; T18 = T16 - T17; T1t = T4 + T7; { E T1l, T1m, T1g, T1i; T1l = T1f * T6; T1m = T1h * T3; T1n = T1l + T1m; T24 = T1l - T1m; T1g = T1f * T3; T1i = T1h * T6; T1j = T1g - T1i; T22 = T1g + T1i; { E Tl, Tp, Ts, Tt; Tl = Tk * T3; Tp = To * T6; Tq = Tl + Tp; Ts = Tk * T6; Tt = To * T3; Tu = Ts - Tt; T1E = Tl - Tp; T1G = Ts + Tt; Tx = W[6]; Ty = W[7]; Tz = FMA(Tk, Tx, To * Ty); TJ = FMA(Tq, Tx, Tu * Ty); T1Z = FNMS(T1h, Tx, T1f * Ty); TB = FNMS(To, Tx, Tk * Ty); T1X = FMA(T1f, Tx, T1h * Ty); T1A = FNMS(T5, Tx, T2 * Ty); TZ = FNMS(Ti, Tx, Tg * Ty); TL = FNMS(Tu, Tx, Tq * Ty); T1y = FMA(T2, Tx, T5 * Ty); TX = FMA(Tg, Tx, Ti * Ty); } } } { E TF, T2b, T4D, T4M, T2K, T3r, T4a, T4m, T1N, T28, T29, T3J, T3M, T44, T3U; E T3V, T4j, T2f, T2g, T2h, T2n, T2s, T4K, T3g, T3h, T4z, T3n, T3o, T3p, T30; E T35, T36, TW, T1r, T1s, T3C, T3F, T43, T3X, T3Y, T4k, T2c, T2d, T2e, T2y; E T2D, T4J, T3d, T3e, T4y, T3k, T3l, T3m, T2P, T2U, T2V; { E T1, T48, Te, T47, Tw, T2H, TD, T2I, T9, Td; T1 = Rp[0]; T48 = Rm[0]; T9 = Rp[WS(rs, 5)]; Td = Rm[WS(rs, 5)]; Te = FMA(T8, T9, Tc * Td); T47 = FNMS(Tc, T9, T8 * Td); { E Tr, Tv, TA, TC; Tr = Ip[WS(rs, 2)]; Tv = Im[WS(rs, 2)]; Tw = FMA(Tq, Tr, Tu * Tv); T2H = FNMS(Tu, Tr, Tq * Tv); TA = Ip[WS(rs, 7)]; TC = Im[WS(rs, 7)]; TD = FMA(Tz, TA, TB * TC); T2I = FNMS(TB, TA, Tz * TC); } { E Tf, TE, T4B, T4C; Tf = T1 + Te; TE = Tw + TD; TF = Tf - TE; T2b = Tf + TE; T4B = T48 - T47; T4C = Tw - TD; T4D = T4B - T4C; T4M = T4C + T4B; } { E T2G, T2J, T46, T49; T2G = T1 - Te; T2J = T2H - T2I; T2K = T2G - T2J; T3r = T2G + T2J; T46 = T2H + T2I; T49 = T47 + T48; T4a = T46 + T49; T4m = T49 - T46; } } { E T1D, T3H, T2l, T2W, T27, T3L, T2r, T34, T1M, T3I, T2m, T2Z, T1W, T3K, T2q; E T31; { E T1x, T2j, T1C, T2k; { E T1u, T1w, T1z, T1B; T1u = Rp[WS(rs, 4)]; T1w = Rm[WS(rs, 4)]; T1x = FMA(T1t, T1u, T1v * T1w); T2j = FNMS(T1v, T1u, T1t * T1w); T1z = Rp[WS(rs, 9)]; T1B = Rm[WS(rs, 9)]; T1C = FMA(T1y, T1z, T1A * T1B); T2k = FNMS(T1A, T1z, T1y * T1B); } T1D = T1x + T1C; T3H = T2j + T2k; T2l = T2j - T2k; T2W = T1x - T1C; } { E T21, T32, T26, T33; { E T1Y, T20, T23, T25; T1Y = Ip[WS(rs, 8)]; T20 = Im[WS(rs, 8)]; T21 = FMA(T1X, T1Y, T1Z * T20); T32 = FNMS(T1Z, T1Y, T1X * T20); T23 = Ip[WS(rs, 3)]; T25 = Im[WS(rs, 3)]; T26 = FMA(T22, T23, T24 * T25); T33 = FNMS(T24, T23, T22 * T25); } T27 = T21 + T26; T3L = T32 + T33; T2r = T21 - T26; T34 = T32 - T33; } { E T1I, T2X, T1L, T2Y; { E T1F, T1H, T1J, T1K; T1F = Ip[WS(rs, 6)]; T1H = Im[WS(rs, 6)]; T1I = FMA(T1E, T1F, T1G * T1H); T2X = FNMS(T1G, T1F, T1E * T1H); T1J = Ip[WS(rs, 1)]; T1K = Im[WS(rs, 1)]; T1L = FMA(Tg, T1J, Ti * T1K); T2Y = FNMS(Ti, T1J, Tg * T1K); } T1M = T1I + T1L; T3I = T2X + T2Y; T2m = T1I - T1L; T2Z = T2X - T2Y; } { E T1S, T2o, T1V, T2p; { E T1P, T1R, T1T, T1U; T1P = Rp[WS(rs, 6)]; T1R = Rm[WS(rs, 6)]; T1S = FMA(T1O, T1P, T1Q * T1R); T2o = FNMS(T1Q, T1P, T1O * T1R); T1T = Rp[WS(rs, 1)]; T1U = Rm[WS(rs, 1)]; T1V = FMA(T1f, T1T, T1h * T1U); T2p = FNMS(T1h, T1T, T1f * T1U); } T1W = T1S + T1V; T3K = T2o + T2p; T2q = T2o - T2p; T31 = T1S - T1V; } T1N = T1D - T1M; T28 = T1W - T27; T29 = T1N + T28; T3J = T3H + T3I; T3M = T3K + T3L; T44 = T3J + T3M; T3U = T3H - T3I; T3V = T3L - T3K; T4j = T3V - T3U; T2f = T1D + T1M; T2g = T1W + T27; T2h = T2f + T2g; T2n = T2l + T2m; T2s = T2q + T2r; T4K = T2n + T2s; T3g = T2l - T2m; T3h = T2q - T2r; T4z = T3g + T3h; T3n = T2W + T2Z; T3o = T31 + T34; T3p = T3n + T3o; T30 = T2W - T2Z; T35 = T31 - T34; T36 = T30 + T35; } { E TO, T3A, T2w, T2L, T1q, T3E, T2z, T2T, TV, T3B, T2x, T2O, T1b, T3D, T2C; E T2Q; { E TI, T2u, TN, T2v; { E TG, TH, TK, TM; TG = Rp[WS(rs, 2)]; TH = Rm[WS(rs, 2)]; TI = FMA(Tk, TG, To * TH); T2u = FNMS(To, TG, Tk * TH); TK = Rp[WS(rs, 7)]; TM = Rm[WS(rs, 7)]; TN = FMA(TJ, TK, TL * TM); T2v = FNMS(TL, TK, TJ * TM); } TO = TI + TN; T3A = T2u + T2v; T2w = T2u - T2v; T2L = TI - TN; } { E T1e, T2R, T1p, T2S; { E T1c, T1d, T1k, T1o; T1c = Ip[0]; T1d = Im[0]; T1e = FMA(T2, T1c, T5 * T1d); T2R = FNMS(T5, T1c, T2 * T1d); T1k = Ip[WS(rs, 5)]; T1o = Im[WS(rs, 5)]; T1p = FMA(T1j, T1k, T1n * T1o); T2S = FNMS(T1n, T1k, T1j * T1o); } T1q = T1e + T1p; T3E = T2R + T2S; T2z = T1p - T1e; T2T = T2R - T2S; } { E TR, T2M, TU, T2N; { E TP, TQ, TS, TT; TP = Ip[WS(rs, 4)]; TQ = Im[WS(rs, 4)]; TR = FMA(T3, TP, T6 * TQ); T2M = FNMS(T6, TP, T3 * TQ); TS = Ip[WS(rs, 9)]; TT = Im[WS(rs, 9)]; TU = FMA(Tx, TS, Ty * TT); T2N = FNMS(Ty, TS, Tx * TT); } TV = TR + TU; T3B = T2M + T2N; T2x = TR - TU; T2O = T2M - T2N; } { E T11, T2A, T1a, T2B; { E TY, T10, T15, T19; TY = Rp[WS(rs, 8)]; T10 = Rm[WS(rs, 8)]; T11 = FMA(TX, TY, TZ * T10); T2A = FNMS(TZ, TY, TX * T10); T15 = Rp[WS(rs, 3)]; T19 = Rm[WS(rs, 3)]; T1a = FMA(T14, T15, T18 * T19); T2B = FNMS(T18, T15, T14 * T19); } T1b = T11 + T1a; T3D = T2A + T2B; T2C = T2A - T2B; T2Q = T11 - T1a; } TW = TO - TV; T1r = T1b - T1q; T1s = TW + T1r; T3C = T3A + T3B; T3F = T3D + T3E; T43 = T3C + T3F; T3X = T3A - T3B; T3Y = T3D - T3E; T4k = T3X + T3Y; T2c = TO + TV; T2d = T1b + T1q; T2e = T2c + T2d; T2y = T2w + T2x; T2D = T2z - T2C; T4J = T2D - T2y; T3d = T2w - T2x; T3e = T2C + T2z; T4y = T3d + T3e; T3k = T2L + T2O; T3l = T2Q + T2T; T3m = T3k + T3l; T2P = T2L - T2O; T2U = T2Q - T2T; T2V = T2P + T2U; } { E T3S, T2a, T3R, T40, T42, T3W, T3Z, T41, T3T; T3S = KP559016994 * (T1s - T29); T2a = T1s + T29; T3R = FNMS(KP250000000, T2a, TF); T3W = T3U + T3V; T3Z = T3X - T3Y; T40 = FNMS(KP587785252, T3Z, KP951056516 * T3W); T42 = FMA(KP951056516, T3Z, KP587785252 * T3W); Rm[WS(rs, 9)] = TF + T2a; T41 = T3S + T3R; Rm[WS(rs, 5)] = T41 - T42; Rp[WS(rs, 6)] = T41 + T42; T3T = T3R - T3S; Rp[WS(rs, 2)] = T3T - T40; Rm[WS(rs, 1)] = T3T + T40; } { E T4r, T4l, T4q, T4p, T4t, T4n, T4o, T4u, T4s; T4r = KP559016994 * (T4k + T4j); T4l = T4j - T4k; T4q = FMA(KP250000000, T4l, T4m); T4n = T1r - TW; T4o = T1N - T28; T4p = FMA(KP587785252, T4n, KP951056516 * T4o); T4t = FNMS(KP587785252, T4o, KP951056516 * T4n); Im[WS(rs, 9)] = T4l - T4m; T4u = T4r + T4q; Im[WS(rs, 5)] = T4t - T4u; Ip[WS(rs, 6)] = T4t + T4u; T4s = T4q - T4r; Im[WS(rs, 1)] = T4p - T4s; Ip[WS(rs, 2)] = T4p + T4s; } { E T3x, T2i, T3y, T3O, T3Q, T3G, T3N, T3P, T3z; T3x = KP559016994 * (T2e - T2h); T2i = T2e + T2h; T3y = FNMS(KP250000000, T2i, T2b); T3G = T3C - T3F; T3N = T3J - T3M; T3O = FMA(KP951056516, T3G, KP587785252 * T3N); T3Q = FNMS(KP587785252, T3G, KP951056516 * T3N); Rp[0] = T2b + T2i; T3P = T3y - T3x; Rm[WS(rs, 7)] = T3P - T3Q; Rp[WS(rs, 8)] = T3P + T3Q; T3z = T3x + T3y; Rp[WS(rs, 4)] = T3z - T3O; Rm[WS(rs, 3)] = T3z + T3O; } { E T4e, T45, T4f, T4d, T4h, T4b, T4c, T4i, T4g; T4e = KP559016994 * (T43 - T44); T45 = T43 + T44; T4f = FNMS(KP250000000, T45, T4a); T4b = T2c - T2d; T4c = T2f - T2g; T4d = FMA(KP951056516, T4b, KP587785252 * T4c); T4h = FNMS(KP951056516, T4c, KP587785252 * T4b); Ip[0] = T45 + T4a; T4i = T4f - T4e; Im[WS(rs, 7)] = T4h - T4i; Ip[WS(rs, 8)] = T4h + T4i; T4g = T4e + T4f; Im[WS(rs, 3)] = T4d - T4g; Ip[WS(rs, 4)] = T4d + T4g; } { E T39, T37, T38, T2F, T3b, T2t, T2E, T3c, T3a; T39 = KP559016994 * (T2V - T36); T37 = T2V + T36; T38 = FNMS(KP250000000, T37, T2K); T2t = T2n - T2s; T2E = T2y + T2D; T2F = FNMS(KP587785252, T2E, KP951056516 * T2t); T3b = FMA(KP951056516, T2E, KP587785252 * T2t); Rm[WS(rs, 4)] = T2K + T37; T3c = T39 + T38; Rm[WS(rs, 8)] = T3b + T3c; Rm[0] = T3c - T3b; T3a = T38 - T39; Rp[WS(rs, 3)] = T2F + T3a; Rp[WS(rs, 7)] = T3a - T2F; } { E T4Q, T4L, T4R, T4P, T4U, T4N, T4O, T4T, T4S; T4Q = KP559016994 * (T4J + T4K); T4L = T4J - T4K; T4R = FMA(KP250000000, T4L, T4M); T4N = T2P - T2U; T4O = T30 - T35; T4P = FMA(KP951056516, T4N, KP587785252 * T4O); T4U = FNMS(KP587785252, T4N, KP951056516 * T4O); Im[WS(rs, 4)] = T4L - T4M; T4T = T4Q + T4R; Ip[WS(rs, 3)] = T4T - T4U; Ip[WS(rs, 7)] = T4U + T4T; T4S = T4Q - T4R; Im[WS(rs, 8)] = T4P + T4S; Im[0] = T4S - T4P; } { E T3q, T3s, T3t, T3j, T3v, T3f, T3i, T3w, T3u; T3q = KP559016994 * (T3m - T3p); T3s = T3m + T3p; T3t = FNMS(KP250000000, T3s, T3r); T3f = T3d - T3e; T3i = T3g - T3h; T3j = FMA(KP951056516, T3f, KP587785252 * T3i); T3v = FNMS(KP587785252, T3f, KP951056516 * T3i); Rp[WS(rs, 5)] = T3r + T3s; T3w = T3t - T3q; Rm[WS(rs, 6)] = T3v + T3w; Rm[WS(rs, 2)] = T3w - T3v; T3u = T3q + T3t; Rp[WS(rs, 1)] = T3j + T3u; Rp[WS(rs, 9)] = T3u - T3j; } { E T4A, T4E, T4F, T4x, T4I, T4v, T4w, T4H, T4G; T4A = KP559016994 * (T4y - T4z); T4E = T4y + T4z; T4F = FNMS(KP250000000, T4E, T4D); T4v = T3n - T3o; T4w = T3k - T3l; T4x = FNMS(KP587785252, T4w, KP951056516 * T4v); T4I = FMA(KP951056516, T4w, KP587785252 * T4v); Ip[WS(rs, 5)] = T4E + T4D; T4H = T4A + T4F; Ip[WS(rs, 1)] = T4H - T4I; Ip[WS(rs, 9)] = T4I + T4H; T4G = T4A - T4F; Im[WS(rs, 6)] = T4x + T4G; Im[WS(rs, 2)] = T4G - T4x; } } } } } static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 19}, {TW_NEXT, 1, 0} }; static const hc2c_desc desc = { 20, "hc2cf2_20", twinstr, &GENUS, {204, 92, 72, 0} }; void X(codelet_hc2cf2_20) (planner *p) { X(khc2c_register) (p, hc2cf2_20, &desc, HC2C_VIA_RDFT); } #endif